已知函數(shù)f(x)=sinωx+cosωx(ω>0),如果存在實數(shù)x1,使得對任意的實數(shù)x,都有f(x1)≤f(x)≤f(x1+2015)成立,則ω的最小值為( 。
A、
2015
B、
π
2015
C、
1
2015
D、
π
4030
考點:兩角和與差的正弦函數(shù),正弦函數(shù)的圖象
專題:計算題,三角函數(shù)的圖像與性質(zhì)
分析:由題意可得區(qū)間[x1,x1+2015]能夠包含函數(shù)的至少一個完整的單調(diào)區(qū)間,利用兩角和的正弦公式求得f(x)=
2
sin(ωx+
π
4
),由2015≥
1
2
ω
求得ω的最小值.
解答: 解:顯然要使結(jié)論成立,只需保證區(qū)間[x1,x1+2015]能夠包含函數(shù)的至少一個完整的單調(diào)區(qū)間即可,
又∵f(x)=sinωx+cosωx=
2
sin(ωx+
π
4
),則2015≥
1
2
ω
,
∴ω≥
π
2015
,
則ω的最小值為:
π
2015
,
故選:B.
點評:本題主要考查兩角和的正弦公式,正弦函數(shù)的單調(diào)性和周期性,屬于中檔題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

{an}前n項和為Sn,a1=1,an=
Sn
n
+n-1.
(1)求證{an}為等差數(shù)列,并求其通項公式;
(2)若存在二次函數(shù)f(x)=ax2(a≠0)使數(shù)列{
f(n)
anan+1
}的前n項和Tn=
2n2+2n
2n+1
,求f(x).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某移動公司對[25,55]歲的人群隨機抽取n人進行了一次是否愿意使用4G網(wǎng)絡(luò)的社會  調(diào)查,若愿意使用的稱為“4G族”,否則稱為“非4G族”,得如下統(tǒng)計表和各年齡段人數(shù)頻率分布直方圖:
組數(shù)分組頻數(shù)4G族在本組所占比例
第一組[25,30)2000.6
第二組[30,35)3000.65
第三組[35,40)2000.5
第四組[40,45)1500.4
第五組[45,50)a0.3
第六組[50,55]500.3
(I)補全頻率分布直方圖并求n、a的值;
(Ⅱ)從年齡段在[40,50)的“4G族”中采用分層抽樣法抽取6人參加4G網(wǎng)絡(luò)體驗活動,求年齡段分別在[40,45)、[45,50)中抽取的人數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)有關(guān)x的一元二次方程9x2+6ax-b2+4=0.
(1)若a是從1,2,3這三個數(shù)中任取的一個數(shù),b是從0,1,2這三個數(shù)中任取的一個數(shù),求上述方程有實根的概率;
(2)若a是從區(qū)間[0,3]中任取的一個數(shù),b是從區(qū)間[0,2]中任取的一個數(shù),求上述方程有實根的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若函數(shù)y=f(x)同時具有性質(zhì):
①是周期函數(shù)且最小正周期為π;
②在[-
π
6
,
π
3
]上是增函數(shù);
③對任意x∈R,都有f(
π
3
-x)=f(
π
3
+x).
則函數(shù)y=f(x)的解析式可以是
 
(只需寫出滿足條件的函數(shù)y=f(x)的一個解析式即可)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在區(qū)間[-π,π]里,滿足sinx=
3
2
的x值是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

推導等差數(shù)列求和公式的方法叫做倒序求和法,利用此法可求得sin21°+sin22°+sin23°+…+sin288°+sin289°=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

用二分法求函數(shù)f(x)=x2+3x-1的近似零點時,現(xiàn)經(jīng)過計算知f(0)<0,f(0.5)>0,由此可得其中一個零點x0∈△,下一步應(yīng)判斷△的符號,以上△上依次應(yīng)填的內(nèi)容為( 。
A、(0,1),f(1)
B、(0,0.5),f(0.25)
C、(0.5,1),f(0.75)
D、(0,0.5),f(0.125)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

化簡:
(1+sinα+cosα)(cos
α
2
-sin
α
2
)
2+2cosα
(0<α<π)

查看答案和解析>>

同步練習冊答案