【題目】如圖,矩形和菱形所在的平面相互垂直,,,.

1)求證:平面

2)求二面角的正切值.

【答案】1)證明見解析;(2.

【解析】

1)可證平面,從而得到,又可證,從而得到平面.

2)以為原點,軸,軸,軸,建立空間直角坐標系,求出平面的法向量和面的法向量后計算它們的夾角的余弦值,再結合二面角為鈍角以及同角的三角函數(shù)基本關系式可求二面角的正切值.

1)證明:∵矩形和菱形所在的平面相互垂直,,

∵矩形菱形平面, ∴平面.

平面,∴,

∵菱形中,

,,故,

∴由勾股定理得,∴

,∴平面.

2)由(1)可知,,兩兩垂直,以為原點,軸,軸,軸,建立空間直角坐標系,

由已知,,,

,

設平面的法向量,

,取.

設平面的法向量,則

,取

設二面角的平面角為,

,所以,

為鈍角,所以二面角的正切值為.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】在正四棱錐中,已知異面直線所成的角為,給出下面三個命題:

:若,則此四棱錐的側(cè)面積為;

:若分別為的中點,則平面;

:若都在球的表面上,則球的表面積是四邊形面積的倍.

在下列命題中,為真命題的是( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】ABC的內(nèi)角AB,C的對邊分別為a,bc,已知2a2bcosC+csinB

(Ⅰ)求tanB

(Ⅱ)若C,ABC的面積為6,求BC

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知拋物線,過點的直線,兩點,過點,分別作的切線,兩切線相交于點.

1)記直線的斜率分別為,,證明:為定值;

2)記的面積為,求的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某中學某社團為研究高三學生課下鉆研數(shù)學時間與數(shù)學考試中的解答題得分的關系,隨機調(diào)查了某中學高三某班名學生每周課下鉆研數(shù)學時間(單位:小時)與高三下學期期中考試數(shù)學解答題得分,數(shù)據(jù)如下表:

2

4

6

8

10

12

30

38

44

48

50

54

1)根據(jù)上述數(shù)據(jù),求出數(shù)學考試中的解答題得分與該學生課下鉆研數(shù)學時間的線性回歸方程,并預測某學生每周課下鉆研數(shù)學時間為小時其數(shù)學考試中的解答題得分;

2)從這人中任選人,求人中至少有人課下鉆研數(shù)學時間不低于小時的概率.

參考公式:,其中, ;參考數(shù)據(jù):

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】地攤經(jīng)濟是李克強總理在本屆政府工作報告中向全國人民發(fā)出的口號,某生產(chǎn)企業(yè)積極響應號召,大力研發(fā)新產(chǎn)品,為了對新研發(fā)的一批產(chǎn)品進行合理定價,將該產(chǎn)品按事先擬定的價格進行試銷,得到一組銷售數(shù)據(jù),如表所示:

試銷單價(元)

4

5

6

7

8

9

產(chǎn)品銷量(件)

84

83

80

75

68

已知,,

1)試求,若變量,具有線性相關關系,求產(chǎn)品銷量(件)關于試銷單價(元)的線性回歸方程

2)用表示用(1)中所求的線性回歸方程得到的與對應的產(chǎn)品銷量的估計值.當銷售數(shù)據(jù)對應的殘差的絕對值時,則將銷售數(shù)據(jù)稱為一個好數(shù)據(jù).現(xiàn)從6個銷售數(shù)據(jù)中任取2個,求恰好2個都是好數(shù)據(jù)的概率.

(參考公式:線性回歸方程中,的最小二乘估計分別為,

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標系中,曲線為參數(shù)),直線t為參數(shù)),以原點O為極點,x軸的非負半軸為極軸建立極坐標系

1)求曲線C與直線l的極坐標方程;

2)若直線l與曲線C相交,交點為,直線與x軸交于Q點,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

1)討論的單調(diào)性;

2)若函數(shù)在點處的切線的斜率為,證明:當時,.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】2020年是我國打贏脫貧攻堅戰(zhàn)收官之年,為落實“精準扶貧”政策,某扶貧小組為一“對點幫扶”農(nóng)戶引種了一種新的經(jīng)濟農(nóng)作物,并指導該農(nóng)戶于2020年初開始種植.已知該經(jīng)濟農(nóng)作物每年每畝的種植成本為1000元,根據(jù)前期各方面調(diào)查發(fā)現(xiàn),該經(jīng)濟農(nóng)作物的市場價格和畝產(chǎn)量均具有隨機性,且兩者互不影響,其具體情況如下表:

該經(jīng)濟農(nóng)作物畝產(chǎn)量

900

1200

該經(jīng)濟農(nóng)作物市場價格(元)

15

20

概率

概率

1)設2020年該農(nóng)戶種植該經(jīng)濟農(nóng)作物一畝的純收入為元,求的分布列;

2)若該農(nóng)戶從2020年開始,連續(xù)三年種植該經(jīng)濟農(nóng)作物,假設三年內(nèi)各方面條件基本不變,求這三年中該農(nóng)戶種植該經(jīng)濟農(nóng)作物一畝至少有兩年的純收入不少于16000元的概率;

32020年全國脫貧標準約為人均純收入4000.假設該農(nóng)戶是一個四口之家,且該農(nóng)戶在2020年的其他方面的支出與收入正好相抵,能否憑這一畝經(jīng)濟農(nóng)作物的純收入,預測該農(nóng)戶在2020年底可以脫貧?并說明理由.

查看答案和解析>>

同步練習冊答案