【題目】已知函數(shù).

1)討論的單調(diào)性;

2)若函數(shù)在點(diǎn)處的切線的斜率為,證明:當(dāng)時(shí),.

【答案】1)答案見(jiàn)解析;(2)證明見(jiàn)解析.

【解析】

1)求得函數(shù)的定義域以及導(dǎo)數(shù),分、、三種情況討論,分析導(dǎo)數(shù)的符號(hào)變化,由此可得出函數(shù)的單調(diào)遞增區(qū)間和遞減區(qū)間;

2)由已知條件求得,可得,由得出,令,利用導(dǎo)數(shù)求得函數(shù)上的最小值,由此可證得結(jié)論.

1)函數(shù)的定義域?yàn)?/span>

.

,令.

①當(dāng)時(shí),即當(dāng)時(shí),

,得;令,得.

此時(shí),函數(shù)單調(diào)遞減區(qū)間為,單調(diào)遞增區(qū)間為;

②當(dāng)時(shí),即當(dāng)時(shí),對(duì)任意的,

此時(shí),函數(shù)的單調(diào)遞增區(qū)間為,無(wú)單調(diào)遞減區(qū)間;

③當(dāng)時(shí),即當(dāng)時(shí).

,得;令,得.

此時(shí),函數(shù)的單調(diào)遞減區(qū)間為,單調(diào)遞增區(qū)間為.

綜上所述,當(dāng)時(shí),函數(shù)的單調(diào)遞減區(qū)間為,單調(diào)遞增區(qū)間為;

當(dāng)時(shí),函數(shù)的單調(diào)遞增區(qū)間為,無(wú)單調(diào)遞減區(qū)間;

當(dāng)時(shí),函數(shù)單調(diào)遞減區(qū)間為,單調(diào)遞增區(qū)間為

2)由已知條件得,解得,

所以,

要證即證,

,其中

,令,其中,

當(dāng)時(shí),,

所以,函數(shù)在區(qū)間上單調(diào)遞增,

,當(dāng)時(shí),,此時(shí),函數(shù)單調(diào)遞減;

當(dāng)時(shí),,此時(shí),函數(shù)單調(diào)遞增.

所以,當(dāng)時(shí),函數(shù)取得最小值,即.

因此,對(duì)任意的,.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在邊長(zhǎng)為2的菱形中,,將菱形沿對(duì)角線折起,使二面角的大小為,則所得三棱錐的外接球表面積為(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,矩形和菱形所在的平面相互垂直,,,,.

1)求證:平面;

2)求二面角的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】中國(guó)古代的四書(shū)是指:《大學(xué)》、《中庸》、《論語(yǔ)》、《孟子》,甲、乙、丙、丁名同學(xué)從中各選一書(shū)進(jìn)行研讀,已知四人選取的書(shū)恰好互不相同,且甲沒(méi)有選《中庸》,乙和丙都沒(méi)有選《論語(yǔ)》,則名同學(xué)所有可能的選擇有______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】《周髀算經(jīng)》是中國(guó)最古老的天文學(xué)和數(shù)學(xué)著作,書(shū)中提到:從冬至之日起,小寒、大寒、立春、雨水、驚蟄、春分、清明、谷雨、立夏、小滿、芒種這十二個(gè)節(jié)氣的日影子長(zhǎng)依次成等差數(shù)列,若冬至、立春、春分的日影子長(zhǎng)的和是37.5尺,芒種的日影子長(zhǎng)為4.5尺,則立夏的日影子長(zhǎng)為:(

A.15.5B.12.5C.9.5D.6.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】眾所周知的“太極圖”,其形狀如對(duì)稱的陰陽(yáng)兩魚(yú)互抱在一起,因此被稱為“陰陽(yáng)魚(yú)太極圖”.如圖是放在平面直角坐標(biāo)系中的“太極圖”的一個(gè)示意圖,整個(gè)圖形是一個(gè)圓面,其中黑色區(qū)域在軸右側(cè)部分的邊界為一個(gè)半圓.給出以下命題:

①在太極圖中隨機(jī)取一點(diǎn),此點(diǎn)取自黑色部分的概率是;

②當(dāng)時(shí),直線與白色部分有公共點(diǎn);

③黑色陰影部分中一點(diǎn),則的最大值為2;

④設(shè)點(diǎn),點(diǎn)在此太極圖上,使得,的范圍是

其中所有正確結(jié)論的序號(hào)是(

A.①②B.②③C.①③D.①④

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】高三十二班同學(xué)設(shè)計(jì)了一個(gè)如圖所示的蝴蝶形圖案(陰影區(qū)域)來(lái)預(yù)示在6月的高考中,同學(xué)們展翅高飛,其中是過(guò)拋物線的焦點(diǎn)的兩條弦,且,點(diǎn)軸上一點(diǎn),記,其中為銳角.

(1)求拋物線的方程;

(2)當(dāng)蝴蝶形圖案的面積最小時(shí),求的大。

查看答案和解析>>

同步練習(xí)冊(cè)答案