11.若x,y滿足不等式組$\left\{\begin{array}{l}{x+y≥2}\\{x≤1}\\{y≤2}\end{array}\right.$,則$\frac{1}{2}$x-y的最大值是$-\frac{1}{2}$.

分析 線性約束條件畫出可行域,然后求出目標(biāo)函數(shù)的最大值.

解答 解:畫出$\left\{\begin{array}{l}{x+y≥2}\\{x≤1}\\{y≤2}\end{array}\right.$的可行域,如圖
在直線x+y-2=0與直線x=1的交點(diǎn)B(1,1)處,
目標(biāo)函數(shù)z=$\frac{1}{2}$x-y取到最大值為$-\frac{1}{2}$,
故答案為:-$\frac{1}{2}$.

點(diǎn)評 線性規(guī)劃問題高考數(shù)學(xué)考試的熱點(diǎn),數(shù)形結(jié)合是數(shù)學(xué)思想的重要手段之一,是連接代數(shù)和幾何的重要方法.值得重視.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.給出下列命題:
①小于90°的角是第一象限角;
②將y=sin2x的圖象上所有點(diǎn)向右平移$\frac{π}{3}$個(gè)單位長度可得到y(tǒng)=sin(2x-$\frac{π}{3}$)的圖象;
③若α、β是第一象限角,且α>β,則sinα>sinβ;
④函數(shù)f(x)=3sin(2x-$\frac{π}{3}$)關(guān)于直線x=$\frac{11π}{12}$對稱
⑤函數(shù)y=|tanx|的周期和對稱軸方程分別為π,x=$\frac{kπ}{2}$(k∈Z)
其中正確的命題的序號是④⑤.(注:把你認(rèn)為正確的命題的序號都填上)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.設(shè)集合P1={x|x2+ax+1>0},P2={x|x2+ax+2>0},Q1={x|x2+x+b>0},Q2={x|x2+2x+b>0},其中a,b∈R,下列說法正確的是(  )
A.對任意a,P1是P2的子集,對任意b,Q1不是Q2的子集
B.對任意a,P1是P2的子集,存在b,使得Q1是Q2的子集
C.存在a,P1不是P2的子集,對任意b,Q1不是Q2的子集
D.存在a,P1不是P2的子集,存在b,使得Q1是Q2的子集

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.已知直線ax+y+2=0與直線x-(3a-1)y-1=0互相垂直,則a=$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.將函數(shù)f(x)=sin2x的圖象向右平移$\frac{π}{4}$個(gè)單位長度后得到函數(shù)g(x)的圖象,則下列說法正確的是( 。
A.g(x)在(0,$\frac{π}{4}$)上單調(diào)遞增,且為奇函數(shù)
B.g(x)的最大值為1,其圖象關(guān)于直線x=$\frac{π}{2}$對稱
C.g(x)在(-$\frac{3π}{8}$,$\frac{π}{8}$)上單調(diào)遞增,且為偶函數(shù)
D.g(x)的周期為π,其圖象關(guān)于點(diǎn)($\frac{3π}{8}$,0)對稱

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.函數(shù)y=$\sqrt{1-lo{g}_{3}x}$-$\frac{1}{\sqrt{2cos2x-1}}$的定義域是(0,$\frac{π}{6}$)∪($\frac{5π}{6}$,3](用區(qū)間表示)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.△ABC的內(nèi)角A,B,C的對邊分別為a,b,c,若a,b,c成等比數(shù)列,且c=2a,則cosB等于( 。
A.$\frac{1}{4}$B.$\frac{\sqrt{2}}{4}$C.$\frac{3}{4}$D.$\frac{\sqrt{2}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.已知向量$\overrightarrow{a}$,$\overrightarrow$的夾角是$\frac{2π}{3}$,|$\overrightarrow{a}$|=3,|$\overrightarrow$|=1,則|$\overrightarrow{a}$-5$\overrightarrow$|=7.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知角α的終邊與單位圓交于點(diǎn)P(-$\frac{3}{5}$,$\frac{4}{5}$),則cosα的值為( 。
A.$\frac{3}{5}$B.-$\frac{3}{5}$C.$\frac{4}{5}$D.-$\frac{4}{5}$

查看答案和解析>>

同步練習(xí)冊答案