已知橢圓C:數(shù)學(xué)公式+數(shù)學(xué)公式=1(a>b>0)的左.右焦點為F1、F2,離心率為e.直線l:y=ex+a與x軸.y軸分別交于點A、B,M是直線l與橢圓C的一個公共點,P是點F1關(guān)于直線l的對稱點,設(shè)數(shù)學(xué)公式數(shù)學(xué)公式
(Ⅰ)證明:λ=1-e2;
(Ⅱ)確定λ的值,使得△PF1F2是等腰三角形.

解:(Ⅰ)因為A、B分別是直線l:y=ex+a與x軸、y軸的交點,所以A、B的坐標(biāo)分別是(-,0)(0,a).
.這里c=
所以點M的坐標(biāo)是(-c,).由得(-c+,)=λ(,a).
.解得λ=1-e2
(Ⅱ)因為PF1⊥l,所以∠PF1F2=90°+∠BAF1為鈍角,
要使△PF1F2為等腰三角形,必有|PF1|=|F1F2|,即|PF1|=c.
設(shè)點F1到l的距離為d,
|PF1|═d===c,
=e.
所以e2=,于是λ=1-e2=
即當(dāng)λ=時,△PF1F2為等腰三角形.
分析:(Ⅰ)因為A、B分別是直線l:y=ex+a與x軸、y軸的交點,所以A、B的坐標(biāo)分別是(-,0)(0,a).由題設(shè)知點M的坐標(biāo)是(-c,).由得(-c+)=λ(,a).從而解得λ=1-e2
(Ⅱ)因為PF1⊥l,所以∠PF1F2=90°+∠BAF1為鈍角,要使△PF1F2為等腰三角形,必有|PF1|=c.由題設(shè)知當(dāng)λ=時,△PF1F2為等腰三角形.
點評:本題考查直線和圓錐曲線的綜合問題,解題時要認(rèn)真審題,仔細(xì)求解,合理地運用公式.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C:+y2=1,則與橢圓C關(guān)于直線y=x成軸對稱的曲線的方程是____________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012年陜西省高考數(shù)學(xué)壓軸卷(解析版) 題型:選擇題

已知橢圓C:+=1(a>b>0)的左右焦點為F1,F(xiàn)2,過F2線與圓x2+y2=b2相切于點A,并與橢圓C交與不同的兩點P,Q,如圖,PF1⊥PQ,若A為線段PQ的靠近P的三等分點,則橢圓的離心率為( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年廣西桂林市、崇左市、防城港市高考第一次聯(lián)合模擬理科數(shù)學(xué)試卷(解析版) 題型:解答題

 如圖,已知橢圓C:+=1(a>b>0)的左、右焦點分別為F、F,A是橢圓C上的一點,AF⊥FF,O是坐標(biāo)原點,OB垂直AF于B,且OF=3OB.

(Ⅰ)求橢圓C的離心率;

(Ⅱ)求t∈(0,b),使得命題“設(shè)圓x+y=t上任意點M(x,y)處的切線交橢圓C于Q、Q兩點,那么OQ⊥OQ”成立.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年四川省攀枝花市高三12月月考文科數(shù)學(xué)試卷(解析版) 題型:解答題

已知橢圓C:=1(a>b>0)的離心率為,且在x軸上的頂點分別為

(1)求橢圓方程;

(2)若直線軸交于點T,P為上異于T的任一點,直線分別與橢圓交于M、N兩點,試問直線MN是否通過橢圓的焦點?并證明你的結(jié)論.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年廣東省高三上學(xué)期摸底考試文科數(shù)學(xué) 題型:解答題

(本題滿分14分)已知橢圓C:=1(a>b>0)的離心率為,短軸一

 

個端點到右焦點的距離為3.

(1)求橢圓C的方程;

(2)過橢圓C上的動點P引圓O:的兩條切線PA、PB,A、B分別為切點,試探究橢圓C上是否存在點P,由點P向圓O所引的兩條切線互相垂直?若存在,請求出點P的坐標(biāo);若不存在,請說明理由.

 

 

 

查看答案和解析>>

同步練習(xí)冊答案