動點(diǎn)的軌跡的方程為,過焦點(diǎn)的直線與相交于兩點(diǎn), 為坐標(biāo)原點(diǎn)。(1)求的值;
(2)設(shè),當(dāng)三角形的面積時,求的取值范圍.
解:(1),設(shè)直線的方程為,將其與的方程聯(lián)立,消去得. ……… 3分
設(shè)的坐標(biāo)分別為,
則. , ……… 5分
故 ……… 6分
(2),
即又 , .
可得 ……… 9分
故三角形的面積,
因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012052406523759379594/SYS201205240654299218951185_DA.files/image020.png">恒成立,所以只要解.
即可解得. ………12分
【解析】略
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
QM |
QP |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014屆山東省濟(jì)寧市高二5月質(zhì)量檢測文科數(shù)學(xué)試卷(解析版) 題型:解答題
如圖,在平面直角坐標(biāo)系中,設(shè)點(diǎn)(),直線:,點(diǎn)在直線上移動,是線段與軸的交點(diǎn), 過、分別作直線、,使, .
(1)求動點(diǎn)的軌跡的方程;
(2)在直線上任取一點(diǎn)做曲線的兩條切線,設(shè)切點(diǎn)為、,求證:直線恒過一定點(diǎn);
(3)對(2)求證:當(dāng)直線的斜率存在時,直線的斜率的倒數(shù)成等差數(shù)列.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年廣東省珠海市高三第一次月考文科數(shù)學(xué) 題型:解答題
(本小題滿分14分)在平面直角坐標(biāo)系中,設(shè)點(diǎn),直線:,點(diǎn)在直線上移動,是線段與軸的交點(diǎn), .
(I)求動點(diǎn)的軌跡的方程;
(II)設(shè)圓過,且圓心在曲線上,是圓在軸上截得的弦,當(dāng)運(yùn)動時弦長是否為定值?請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com