精英家教網 > 高中數學 > 題目詳情
如圖,△ABC內接于⊙O,∠C=40°,則∠ABO=    度.
【答案】分析:已知了∠ACB的度數,易求得同弧所對的圓心角∠AOB的度數;等腰△AOB中,根據三角形內角和定理即可求得底角∠ABO的度數.
解答:解:△AOB中,OA=OB,
∴∠ABO=(180°-∠AOB);
又∵∠AOB=2∠C=80°,
∴∠ABO=50°.
故答案為:50.
點評:此題主要考查的是圓周角定理:同弧所對的圓周角是圓心角的一半.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

精英家教網如圖,△ABC內接于圓O,AB是圓O的直徑,AB=2,BC=1,設AE與平面ABC所成的角為θ,且tanθ=
3
2
,四邊形DCBE為平行四邊形,DC⊥平面ABC.
(1)求三棱錐C-ABE的體積;
(2)證明:平面ACD⊥平面ADE;
(3)在CD上是否存在一點M,使得MO∥平面ADE?證明你的結論.

查看答案和解析>>

科目:高中數學 來源: 題型:

精英家教網如圖,△ABC內接于⊙O,AB=AC,直線MN切⊙O于點C,BE∥MN交AC于點E.若AB=6,BC=4,求AE的長.

查看答案和解析>>

科目:高中數學 來源: 題型:

如圖,△ABC內接于圓柱的底面圓O,AB是圓O的直徑,AB=2,BC=1,DC、EB是兩條母線,且 tan∠EAB=
3
2

(1)求三棱錐C-ABE的體積;
(2)證明:平面ACD⊥平面ADE;
(3)在CD上是否存在一點M,使得MO∥平面ADE,證明你的結論.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2013•沈陽二模)選修4-1:幾何證明選講
如圖,△ABC內接于⊙O,AB是⊙O的直徑,PA是過點A的直線,且∠PAC=∠ABC.
(1)求證:PA是⊙O的切線;
(2)如果弦CD交AB于點E,AC=8,CE:ED=6:5,AE:EB=2:3,求直徑AB的長.

查看答案和解析>>

科目:高中數學 來源: 題型:

如圖:△ABC內接于⊙O,AB=AC,直線MN切⊙O于點C,BE∥MN交AC于點E,若AB=6,BC=4,則AE的長為(  )

查看答案和解析>>

同步練習冊答案