(選修4-1 幾何證明選講)
如圖,ABCD為圓內(nèi)接四邊形,延長(zhǎng)兩組對(duì)邊分別交于點(diǎn)E,F(xiàn),∠AFB的平分線分別交AB,CD于點(diǎn)H,K.求證:EH=EK.

【答案】分析:由HF為∠AFB的平分線,可得∠1=∠2.由ABCD為圓內(nèi)接四邊形,可得∠FCK=∠A.因此∠EHK=∠EKH,即可證明.
解答:解:∵HF為∠AFB的平分線,∴∠1=∠2.
∵ABCD為圓內(nèi)接四邊形,∴∠FCK=∠A.
∴∠1+∠A=∠2+∠FCK,
∴∠EHK=∠EKH.
∴EH=EK.
點(diǎn)評(píng):熟練掌握角平分線的性質(zhì)、圓內(nèi)接四邊形的性質(zhì)、等腰三角形的判定定理是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)A.(選修4-4坐標(biāo)系與參數(shù)方程)已知點(diǎn)A是曲線ρ=2sinθ上任意一點(diǎn),則點(diǎn)A到直線ρsin(θ+
π3
)=4
的距離的最小值是
 

B.(選修4-5不等式選講)不等式|x-log2x|<x+|log2x|的解集是
 

C.(選修4-1幾何證明選講)如圖所示,AC和AB分別是圓O的切線,且OC=3,AB=4,延長(zhǎng)AO到D點(diǎn),則△ABD的面積是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

選修4-1幾何證明選講
如圖,圓O的圓心O在Rt△ABC的直角邊BC上,該圓與直角邊AB相切,與斜邊AC交于D,E,AD=DE=EC,AB=
14

(I)求BC的長(zhǎng);
(II)求圓O的半徑.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

選修4-1幾何證明選講
如圖,設(shè)△ABC的外接圓的切線AE與BC的延長(zhǎng)線交于點(diǎn)E,∠BAC的平分線與BC交于點(diǎn)D.
求證:ED2=EC•EB.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(考生注意:請(qǐng)?jiān)谙铝腥}中任選一題作答,如果多做,則按所做的第一題評(píng)閱記分)
A.(選修4-5 不等式選講)
若任意實(shí)數(shù)x使m≥|x+2|-|5-x|恒成立,則實(shí)數(shù)m的取值范圍是
[7,+∞)
[7,+∞)
;
B.(選修4-1 幾何證明選講)
如圖:EB、EC是⊙O的兩條切線,B、C是切點(diǎn),A、D是⊙O上兩點(diǎn),如果∠E=46°,∠DCF=32°,則∠A的度數(shù)是
99°
99°
;
C.(選修4-4坐標(biāo)系與參數(shù)方程)
極坐標(biāo)系下,直線ρcos(θ-
π
4
)=
2
與圓ρ=
2
的公共點(diǎn)個(gè)數(shù)是
1
1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

選做題(請(qǐng)考生在以下三個(gè)小題中任選一題作答,如果多做,則按所做的第一題評(píng)閱記分)
A.(選修4-4坐標(biāo)系與參數(shù)方程)若M,N分別是曲線ρ=2cosθ和ρsin(θ-
π
4
)=
2
2
上的動(dòng)點(diǎn),則M,N兩點(diǎn)間的距離的最小值是
2
-1
2
-1

B.(選修4-5 不等式選講)若不等式|x+
1
x
|>|a-2|+1
對(duì)于一切非零實(shí)數(shù)x均成立,則實(shí)數(shù)a的取值范圍為
1<a<3
1<a<3

C.(選修4-1 幾何證明選講)(幾何證明選做題)如圖,圓O的割線PBA過(guò)圓心O,弦CD交AB于點(diǎn)E,且△COE~△PDE,PB=OA=2,則PE的長(zhǎng)等于
3
3

查看答案和解析>>

同步練習(xí)冊(cè)答案