【題目】如圖,在四邊形中,,以為折痕把折起,使點到達點的位置,且.
(1)證明:平面;
(2)若為的中點,二面角等于60°,求直線與平面所成角的正弦值.
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù) .
(1)若在 處導數(shù)相等,證明: ;
(2)若對于任意 ,直線 與曲線都有唯一公共點,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在發(fā)生某公共衛(wèi)生事件期間,有專業(yè)機構認為該事件在一段時間內(nèi)沒有發(fā)生大規(guī)模群體感染的標志是“連續(xù)10日,每天新增疑似病例不超過7人”.已知過去10日,、、三地新增疑似病例數(shù)據(jù)信息如下:
地:總體平均數(shù)為3,中位數(shù)為4;
地:總體平均數(shù)為2,總體方差為3;
地:總體平均數(shù)為1,總體方差大于0;
則、、三地中,一定沒有發(fā)生大規(guī)模群體感染的是__________地.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知為橢圓上的一點,F為橢圓的右焦點,且垂直于x軸,不過原點O的直線交橢圓于A,B兩點,線段的中點M在直線上.
(1)求橢圓C的標準方程;
(2)當的面積最大時,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】平面直角坐標系中,曲線的參數(shù)方程為(為參數(shù),且).以坐標原點O為極點,x軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為.
(1)求曲線的普通方程和曲線的直角坐標方程;
(2)已知點P的極坐標為,Q為曲線上的動點,求的中點M到曲線的距離的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,三棱柱的底面是等邊三角形,在底面ABC上的射影為的重心G.
(1)已知,證明:平面平面;
(2)若三棱柱的側棱與底面所成角的正切值為,,求點到平面的距離.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】以直角坐標系的原點O為極點,x軸的非負半軸為極軸,建立極坐標系,并在兩種坐標系中取相同的長度單位.已知圓和圓的極坐標方程分別是和.
(1)求圓和圓的公共弦所在直線的直角坐標方程;
(2)若射線:與圓的交點為O、P,與圓的交點為O、Q,求的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知正四棱錐的底面邊長為高為其內(nèi)切球與面切于點,球面上與距離最近的點記為,若平面過點,且與平行,則平面截該正四棱錐所得截面的面積為______.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com