【題目】如圖,四棱錐P-ABCD中,AD⊥平面PAB,AP⊥AB.
(1)求證:CD⊥AP;
(2)若CD⊥PD,求證:CD∥平面PAB;
【答案】(1)見解析;(2)見解析.
【解析】
試題(1)由平面,得到,由,進而證得平面,即可證明;
(2)首先證得平面,平面,得到,利用直線與平面平行的判定定理,即可證得結(jié)論。
試題解析:
(1)因為AD⊥平面PAB,AP平面PAB,
所以AD⊥AP.又因為AP⊥AB ,AB∩AD=A,AB平面ABCD,AD平面ABCD,
所以AP⊥平面ABCD. 因為CD平面ABCD,
所以CD⊥AP.
(2)因為CD⊥AP,CD⊥PD,且PD∩AP=P,PD平面PAD,AP平面PAD,
所以CD⊥平面PAD. ①
因為AD⊥平面PAB,AB平面PAB,
所以AB⊥AD.
又因為AP⊥AB,AP∩AD=A,AP平面PAD,AD平面PAD,
所以AB⊥平面PAD. ②
由①②得CD∥AB,
因為CD平面PAB,AB平面PAB,
所以CD∥平面PAB.
科目:高中數(shù)學 來源: 題型:
【題目】為了解某班學生喜愛打籃球是否與性別有關(guān),對本班45人進行了問卷調(diào)查得到了如下的列聯(lián)表:
喜愛打籃球 | 不喜愛打籃球 | 合計 | |
男生 | 5 | ||
女生 | 5 | ||
合計 | 45 |
已知在全部45人中隨機抽取1人,是男同學的概率為
(1)請將上面的列聯(lián)表補充完整;
(2)是否有的把握認為喜愛打籃球與性別有關(guān),請說明理由。
附參考公式:
0.15 | 0,10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某輛汽車以千米/小時的速度在高速公路上勻速行駛(考慮到高速公路行車安全要求)時,每小時的油耗(所需要的汽油量)為升,其中為常數(shù),且.
(1)若汽車以千米/小時的速度行駛時,每小時的油耗為升,欲使每小時的油耗不超過升,求的取值范圍;
(2)求該汽車行駛千米的油耗的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖正方體的棱長為a,以下結(jié)論不正確的是( )
A. 異面直線與所成的角為
B. 直線與垂直
C. 直線與平行
D. 三棱錐的體積為
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】扇形AOB中心角為,所在圓半徑為,它按如圖(Ⅰ)(Ⅱ)兩種方式有內(nèi)接矩形CDEF.
(1)矩形CDEF的頂點C、D在扇形的半徑OB上,頂點E在圓弧AB上,頂點F在半徑OA上,設(shè);
(2)點M是圓弧AB的中點,矩形CDEF的頂點D、E在圓弧AB上,且關(guān)于直線OM對稱,頂點C、F分別在半徑OB、OA上,設(shè);
試研究(1)(2)兩種方式下矩形面積的最大值,并說明兩種方式下哪一種矩形面積最大?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知點,點,點,動圓與軸相切于點,過點的直線與圓相切于點,過點的直線與圓相切于點(均不同于點),且與交于點,設(shè)點的軌跡為曲線.
(1)證明:為定值,并求的方程;
(2)設(shè)直線與的另一個交點為,直線與交于兩點,當三點共線時,求四邊形的面積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】若異面直線所成的角是,則以下三個命題:
①存在直線,滿足與的夾角都是;
②存在平面,滿足,與所成角為;
③存在平面,滿足,與所成銳二面角為.
其中正確命題的個數(shù)為( )
A. 0 B. 1 C. 2 D. 3
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】淄博七中、臨淄中學為了加強交流,增進友誼,兩校準備舉行一場足球賽,由淄博七中版畫社的同學設(shè)計一幅矩形宣傳畫,要求畫面面積為,畫面的上、下各留空白,左、右各留空白.如何設(shè)計畫面的高與寬的尺寸,才能使宣傳畫所用紙張面積最小?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com