【題目】如圖,四棱錐PABCD中,AD⊥平面PABAPAB

(1)求證:CDAP;

(2)若CDPD,求證:CD∥平面PAB;

【答案】(1)見解析;(2)見解析.

【解析】

試題(1)由平面,得到,由,進而證得平面,即可證明

(2)首先證得平面,平面,得到,利用直線與平面平行的判定定理,即可證得結(jié)論。

試題解析:

(1)因為AD⊥平面PABAP平面PAB,

所以ADAP.又因為APAB ABADA,AB平面ABCDAD平面ABCD,

所以AP⊥平面ABCD. 因為CD平面ABCD

所以CDAP

(2)因為CDAP,CDPD,且PDAPP,PD平面PADAP平面PAD

所以CD⊥平面PAD. ①

因為AD⊥平面PAB,AB平面PAB

所以ABAD

又因為APAB,APADAAP平面PAD,AD平面PAD

所以AB⊥平面PAD. ②

由①②得CDAB,

因為CD平面PABAB平面PAB,

所以CD∥平面PAB

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】為了解某班學生喜愛打籃球是否與性別有關(guān),對本班45人進行了問卷調(diào)查得到了如下的列聯(lián)表:

喜愛打籃球

不喜愛打籃球

合計

男生

5

女生

5

合計

45

已知在全部45人中隨機抽取1人,是男同學的概率為

(1)請將上面的列聯(lián)表補充完整;

(2)是否有的把握認為喜愛打籃球與性別有關(guān),請說明理由。

附參考公式:

0.15

0,10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某輛汽車以千米/小時的速度在高速公路上勻速行駛(考慮到高速公路行車安全要求)時,每小時的油耗(所需要的汽油量)為升,其中為常數(shù),且

(1)若汽車以千米/小時的速度行駛時,每小時的油耗為升,欲使每小時的油耗不超過升,求的取值范圍;

(2)求該汽車行駛千米的油耗的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖正方體的棱長為a,以下結(jié)論不正確的是(  )

A. 異面直線所成的角為

B. 直線垂直

C. 直線平行

D. 三棱錐的體積為

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】扇形AOB中心角為,所在圓半徑為,它按如圖()()兩種方式有內(nèi)接矩形CDEF

(1)矩形CDEF的頂點C、D在扇形的半徑OB上,頂點E在圓弧AB上,頂點F在半徑OA上,設(shè);

(2)M是圓弧AB的中點,矩形CDEF的頂點D、E在圓弧AB上,且關(guān)于直線OM對稱,頂點CF分別在半徑OB、OA上,設(shè);

試研究(1)(2)兩種方式下矩形面積的最大值,并說明兩種方式下哪一種矩形面積最大?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列是等差數(shù)列,是等比數(shù)列,.

(1)求的通項公式;

(2)若,求數(shù)列的前項和.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知點,點,點,動圓軸相切于點,過點的直線與圓相切于點,過點的直線與圓相切于點均不同于點),且交于點,設(shè)點的軌跡為曲線.

(1)證明:為定值,并求的方程;

(2)設(shè)直線的另一個交點為,直線交于兩點,當三點共線時,求四邊形的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若異面直線所成的角是,則以下三個命題:

①存在直線,滿足的夾角都是

②存在平面,滿足所成角為;

③存在平面,滿足,所成銳二面角為.

其中正確命題的個數(shù)為( )

A. 0 B. 1 C. 2 D. 3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】淄博七中、臨淄中學為了加強交流,增進友誼,兩校準備舉行一場足球賽,由淄博七中版畫社的同學設(shè)計一幅矩形宣傳畫,要求畫面面積為,畫面的上、下各留空白,左、右各留空白.如何設(shè)計畫面的高與寬的尺寸,才能使宣傳畫所用紙張面積最小?

查看答案和解析>>

同步練習冊答案