【題目】已知某運(yùn)動(dòng)員每次投籃命中的概率為80%.現(xiàn)采用隨機(jī)模擬的方法估計(jì)該運(yùn)動(dòng)員三次投籃恰有兩次命中的概率:先由計(jì)算器產(chǎn)生09之間取整數(shù)值的隨機(jī)數(shù),指定1,2,3,4,5,6,7,8表示命中,9,0表示未命中;再以每三個(gè)隨機(jī)數(shù)為一組,代表三次投籃的結(jié)果.經(jīng)隨機(jī)模擬產(chǎn)生了如下20組隨機(jī)數(shù):

907

966

191

925

271

932

812

458

569

683

431

257

393

027

556

488

730

113

537

989

據(jù)此估計(jì),該運(yùn)動(dòng)員三次投籃均命中的概率為( )

A.B.C.D.

【答案】C

【解析】

根據(jù)在這20組數(shù)據(jù)中,表示該運(yùn)動(dòng)員三次投籃均命中的有10組,從而得出結(jié)論.

在這20組數(shù)據(jù)中,表示該運(yùn)動(dòng)員三次投籃均命中的有:

271,812,458,683,431,257,556,488,113,537,共10組,

所以,估計(jì)該運(yùn)動(dòng)員三次投籃均命中的概率為.

故選:C.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在多面體ABCDNPM中,底面ABCD是菱形,∠ABC=60°,PA⊥平面ABCD,ABAP=2,PMABPNAD,PMPN=1.

(1)求證:MNPC;

(2)求平面MNC與平面APMB所成銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩家外賣公司,其送餐員的日工資方案如下:甲公司的底薪70元,每單抽成3元;乙公司無底薪,40單以內(nèi)(含40單)的部分每單抽成5元,超出40單的部分每單抽成7元.假設(shè)同一公司送餐員一天的送餐單數(shù)相同,現(xiàn)從兩家公司各隨機(jī)抽取一名送餐員,并分別記錄其100天的送餐單數(shù),得到頻數(shù)表如下.

甲公司送餐員送餐單數(shù)頻數(shù)表

送餐單數(shù)

38

39

40

41

42

天數(shù)

20

40

20

10

10

乙公司送餐員送餐單數(shù)頻數(shù)表

送餐單數(shù)

38

39

40

41

42

天數(shù)

10

20

20

40

10

根據(jù)上表數(shù)據(jù),利用所學(xué)的統(tǒng)計(jì)學(xué)知識(shí):

(1)求甲公司送餐員日平均工資;

(2)某人擬到甲、乙兩家公司中的一家應(yīng)聘送餐員,如果僅從日平均工資的角度考慮,他應(yīng)該選擇去哪家公司應(yīng)聘,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓經(jīng)過點(diǎn),離心率為,動(dòng)點(diǎn)M2t)(.

1)求橢圓的標(biāo)準(zhǔn)方程;

2)求以OM為直徑且截直線所得的弦長為2的圓的方程;

3)設(shè)F是橢圓的右焦點(diǎn),過點(diǎn)FOM的垂線與以OM為直徑的圓交于點(diǎn)N,證明線段ON的長為定值,并求出這個(gè)定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知一圓的圓心在直線上,且該圓經(jīng)過兩點(diǎn).

1)求圓的標(biāo)準(zhǔn)方程;

2)若斜率為的直線與圓相交于,兩點(diǎn),試求面積的最大值和此時(shí)直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線的焦點(diǎn)到直線的距離為.

(1)求拋物線的標(biāo)準(zhǔn)方程;

(2)設(shè)點(diǎn)是拋物線上的動(dòng)點(diǎn),若以點(diǎn)為圓心的圓在軸上截得的弦長均為4,求證:圓恒過定點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列有關(guān)命題的敘述錯(cuò)誤的是(

A. 對(duì)于命題p: ,則 .

B. 命題的逆否命題為”.

C. 為假命題,則均為假命題.

D. 的充分不必要條件.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為振興旅游業(yè),香港計(jì)劃向內(nèi)陸地區(qū)發(fā)行總量為2000萬張的紫荊卡,其中向內(nèi)陸人士(廣東戶籍除外)發(fā)行的是紫荊金卡(簡稱金卡),向廣東籍人士發(fā)行的是紫荊銀卡(簡稱銀卡).某旅游公司組織了一個(gè)有36名內(nèi)陸游客的旅游團(tuán)到香港名勝旅游,其中是非廣東籍內(nèi)陸游客,其余是廣東籍游客.在非廣東新游客中有持金卡,在廣東籍游客中有持銀卡.

(Ⅰ)在該團(tuán)中隨機(jī)采訪3名游客,求恰有1人持金卡且持銀卡者少于2人的概率;

(Ⅱ)在該團(tuán)的廣東籍游客中隨機(jī)采訪3名游客,設(shè)其中持銀卡人數(shù)為隨機(jī)變量,求的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知實(shí)數(shù),定義域?yàn)?/span>的函數(shù)是偶函數(shù),其中為自然對(duì)數(shù)的底數(shù).

(Ⅰ)求實(shí)數(shù)值;

(Ⅱ)判斷該函數(shù)上的單調(diào)性并用定義證明;

(Ⅲ)是否存在實(shí)數(shù),使得對(duì)任意的,不等式恒成立.若存在,求出實(shí)數(shù)的取值范圍;若不存在,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案