如圖,已知PA⊥⊙O所在的平面,AB是⊙O的直徑,AB=2,C是⊙O上一點(diǎn),且AC=BC=PA,E是PC的中點(diǎn),F(xiàn)是PB的中點(diǎn).
(1)求證:EF∥平面ABC;
(2)求證:EF⊥平面PAC;
(3)求三棱錐B-PAC的體積.
考點(diǎn):直線與平面垂直的判定,棱柱、棱錐、棱臺(tái)的體積,直線與平面平行的判定
專題:空間位置關(guān)系與距離
分析:(1)直接利用直線與平面平行的判定定理證明EF∥平面ABC;
(2)通過證明BC⊥平面PAC,EF∥BC,即可證明EF⊥平面PAC;
(3)判斷PA⊥平面ABC,求出底面面積以及高,即可求三棱錐B-PAC的體積.
解答: 證明:(1)在△PBC中,E是PC的中點(diǎn),F(xiàn)是PB的中點(diǎn),所以EF∥BC.
又BC?平面ABC,EF?平面ABC,所以EF∥平面ABC.

(2)因?yàn)镻A⊥平面ABC,BC?平面ABC,所以PA⊥BC.
因?yàn)锳B是⊙O的直徑,所以BC⊥AC.
又PA∩AC=A,所以BC⊥平面PAC.
由(1)知EF∥BC,所以EF⊥平面PAC.

(3)解:在Rt△ABC中,AB=2,AC=BC,所以AC=BC=
2

所以PA=
2

因?yàn)镻A⊥平面ABC,AC?平面ABC,所以PA⊥AC.
所以S△PAC=
1
2
PA•AC=1

由(2)知BC⊥平面PAC,所以VB-PAC=
1
3
S△PAC•BC=
2
3
點(diǎn)評(píng):本題考查直線與平面垂直直線與平面平行的判定定理,幾何體的體積的求法,考查空間想象能力以及計(jì)算能力.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù) f(x)=
m
2
x2
+lnx-(m+1)x,m∈R.
(Ⅰ)求證:當(dāng)m=-1時(shí),f(x)≤-
1
2
;
(Ⅱ)討論函數(shù)f(x)  的單調(diào)性;
(Ⅲ)當(dāng)m≤0時(shí),h(x)=sinx-xcosx-
1
3
x2
+1,若任意x1∈(0,π],均存在x2∈[0,π]使得f(x1)<h(x2)成立,求出m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a,b∈R,函數(shù)f(x)=tanx在x=-
π
4
處與直線y=ax+b+
π
2
相切,設(shè)g(x)=ex+bx2+a,若在區(qū)間[1,2]上,不等式m≤g(x)≤m2-2恒成立,則實(shí)數(shù)m( 。
A、有極小值-e
B、有極小值e
C、有極大值e
D、有極大值2e+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

由兩條曲線y=x2,y=
1
4
x2與直線y=1圍成平面區(qū)域的面積是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)各項(xiàng)均不為0的數(shù)列{an}滿足an+1=
2
an
(n≥1),Sn是其前n項(xiàng)和,若a2a4=2a5,則a3=(  )
A、
2
B、2
C、2
2
D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對(duì)于定義在R上的連續(xù)函數(shù)f(x),存在常數(shù)k(k∈R),使得f(x+k)+kf(x)=0對(duì)任意實(shí)數(shù)x都成立,則稱f(x)為k層的螺旋函數(shù),現(xiàn)給出四個(gè)命題:
①f(x)=2是2層螺旋函數(shù); 
②f(x)=x2是k層螺旋函數(shù);
③f(x)=4x是-
1
2
層螺旋函數(shù);
④f(x)=sin(πx)是1層螺旋函數(shù).
其中正確的命題有( 。
A、①③B、②③C、③④D、②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知y=1與函數(shù)f(x)=x2-|x|+a的圖象有兩個(gè)交點(diǎn),則實(shí)數(shù)a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

關(guān)于如圖所示的4個(gè)幾何體,說法正確的是( 。
A、只有②是棱柱
B、只有②④是棱柱
C、只有①②是棱柱
D、只有①②④是棱柱

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列函數(shù)在區(qū)間(0,1)上是增函數(shù)的是(  )
A、y=|x|
B、y=3-2x
C、y=
1
2+x
D、y=x2-4x+3

查看答案和解析>>

同步練習(xí)冊答案