已知函數(shù)
(1)若上單調(diào)遞增,求的取值范圍;
(2)若定義在區(qū)間D上的函數(shù)對(duì)于區(qū)間上的任意兩個(gè)值總有以下不等式成立,則稱(chēng)函數(shù)為區(qū)間上的 “凹函數(shù)”.試證當(dāng)時(shí),為“凹函數(shù)”.
(1)(2)理解凹函數(shù)的定義 ,然后結(jié)合中點(diǎn)函數(shù)值與任意兩點(diǎn)的函數(shù)值和的關(guān)系式作差法加以證明。

試題分析:解(1)由,得
函數(shù)為上單調(diào)函數(shù). 若函數(shù)為上單調(diào)增函數(shù),則上恒成立,即不等式上恒成立. 也即上恒成立.
,上述問(wèn)題等價(jià)于,而為在上的減函數(shù),則,于是為所求.
(2)證明:由

 

 ①
, ∴ ②
  ∴,
 ∴ ③ 
由①、②、③得
,從而由凹函數(shù)的定義可知函數(shù)為凹函數(shù)
點(diǎn)評(píng):結(jié)合均值不等式的思想,以及函數(shù)的解析式來(lái)求解,屬于中檔題。
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

, 則的值為   (     )
A.8B.C.2D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知,,是否存在實(shí)數(shù),使同時(shí)滿(mǎn)足下列兩個(gè)條件:(1)上是減函數(shù),在上是增函數(shù);(2)的最小值是,若存在,求出,若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

設(shè)是連續(xù)的偶函數(shù),且當(dāng)時(shí),是單調(diào)函數(shù),則滿(mǎn)足的所有之和為(    )
A.B.C.5D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

函數(shù)y=的單調(diào)區(qū)間為_(kāi)__________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知函數(shù)有三個(gè)極值點(diǎn)。
(I)證明:;
(II)若存在實(shí)數(shù)c,使函數(shù)在區(qū)間上單調(diào)遞減,求的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

設(shè)函數(shù),,已知為函數(shù)的極值點(diǎn)
(1)求函數(shù)上的單調(diào)區(qū)間,并說(shuō)明理由.
(2)若曲線(xiàn)處的切線(xiàn)斜率為-4,且方程有兩個(gè)不相等的負(fù)實(shí)根,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(12分)(某商品進(jìn)貨單價(jià)為元,若銷(xiāo)售價(jià)為元,可賣(mài)出個(gè),如果銷(xiāo)售單價(jià)每漲元,銷(xiāo)售量就減少個(gè),為了獲得最大利潤(rùn),則此商品的最佳售價(jià)應(yīng)為多少?)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿(mǎn)分12分) 已知函數(shù)處有極值.
(Ⅰ)求實(shí)數(shù)值;
(Ⅱ)求函數(shù)的單調(diào)區(qū)間;
(Ⅲ)試問(wèn)是否存在實(shí)數(shù),使得不等式對(duì)任意 及
恒成立?若存在,求出的取值范圍;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案