【題目】已知函數(shù)f(x)=2x3+3ax2+3bx+8在x=1及x=2處取得極值.
(1)求a、b的值;
(2)求f(x)的單調(diào)區(qū)間.
【答案】
(1)解:∵函數(shù)f(x)=2x3+3ax2+3bx+8,
∴f′(x)=6x2+6ax+3b,
∵f(x)在x=1及x=2處取得極值,
∴ ,
解得a=﹣3,b=4
(2)解:∵a=﹣3,b=4,
∴f′(x)=6x2﹣18x+12,
由f′(x)=6x2﹣18x+12>0,得x>2,或x<1;
由f′(x)=6x2﹣18x+12<0,得1<x<2.
∴f(x)的單調(diào)增區(qū)間為(﹣∞,1),(2,+∞),f(x)的單調(diào)減區(qū)間為(1,2)
【解析】(1)由函數(shù)f(x)=2x3+3ax2+3bx+8,知f′(x)=6x2+6ax+3b,再由f(x)在x=1及x=2處取得極值,能求出a、b的值.(2)由(1)知f′(x)=6x2﹣18x+12,由f′(x)=6x2﹣18x+12>0,得x>2,或x<1;由f′(x)=6x2﹣18x+12<0,得1<x<2.由此能求出f(x)的單調(diào)區(qū)間.
【考點精析】關于本題考查的利用導數(shù)研究函數(shù)的單調(diào)性和函數(shù)的極值,需要了解一般的,函數(shù)的單調(diào)性與其導數(shù)的正負有如下關系: 在某個區(qū)間內(nèi),(1)如果,那么函數(shù)在這個區(qū)間單調(diào)遞增;(2)如果,那么函數(shù)在這個區(qū)間單調(diào)遞減;極值反映的是函數(shù)在某一點附近的大小情況才能得出正確答案.
科目:高中數(shù)學 來源: 題型:
【題目】已知正項等差數(shù)列{an}的前n項和為Sn , 且滿足 .
(1)求數(shù)列{an}的通項公式;
(2)求數(shù)列 的前n項和.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)= x3﹣ax2+(a2﹣1)x+b(a,b∈R),其圖象在點(1,f(1))處的切線方程為x+y﹣3=0.
(1)求a,b的值;
(2)求函數(shù)f(x)的單調(diào)區(qū)間,并求出f(x)在區(qū)間[﹣2,4]上的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知f(x)=|x﹣1|+|x+1|.
(1)求f(x)≤x+2的解集;
(2)若任意x∈R使不等式 成立,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在四棱錐 中,平面PAD⊥ABCD,AB=AD,∠BAD=60°,E,F(xiàn)分別是AP,AD的中點.
求證:
(1)直線EF∥平面PCD;
(2)平面BEF⊥平面PAD.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知雙曲線方程為16x2﹣9y2=144.
(1)求該雙曲線的實軸長、虛軸長、離心率;
(2)若拋物線C的頂點是該雙曲線的中心,而焦點是其左頂點,求拋物線C的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖所示,在三棱柱ABC-A1B1C1中,側(cè)棱AA1⊥底面ABC,AB=AC=1,AA1=2,∠B1A1C1=90°,D為BB1的中點.
求證:AD⊥平面A1DC1.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設集合A= ,B= ,從A到B的對應關系f不是映射的是( )
A.f:x→y=
B.f:x→y=
C.f:x→y=
D.f:x→y=
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com