【題目】下列命題:①在線性回歸模型中,相關(guān)指數(shù)表示解釋變量對于預報變量的貢獻率, 越接近于1,表示回歸效果越好;②兩個變量相關(guān)性越強,則相關(guān)系數(shù)的絕對值就越接近于1;③在回歸直線方程中,當解釋變量每增加一個單位時,預報變量平均減少0.5個單位;④對分類變量,它們的隨機變量的觀測值來說, 越小,“有關(guān)系”的把握程度越大.其中正確命題的個數(shù)是

A. 1個 B. 2個 C. 3個 D. 4個

【答案】C

【解析】對于①,在回歸分析模型中,相關(guān)指數(shù)表示解釋變量對于預報變量的貢獻率, 越接近于1,表示回歸效果越好,正確,因為相關(guān)指數(shù)越大,則殘差平方和越小,模型的擬合效果越好,①正確.

對于②兩個變量相關(guān)性越強,則相關(guān)系數(shù)的絕對值就越接近于1;

對于③在回歸直線方程中,當解釋變量每增加一個單位時,預報變量平均減少0.5個單位;正確;

對于④對分類變量,它們的隨機變量的觀測值來說, 越小,“有關(guān)系”的把握程度越大.錯誤,因為在對分類變量進行獨立性檢驗時,隨機變量的觀測值越大,則“相關(guān)”可信程度越大,故④錯誤;

故選C

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知f(x)exax1.

1)求f(x)的單調(diào)增區(qū)間;

2)若f(x)在定義域R內(nèi)單調(diào)遞增,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知菱形的邊長為2, . 是邊上一點,線段于點.

(1)若的面積為,求的長;

(2)若,求.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,已知正方形和矩形所在平面互相垂直, ,

(1)求二面角的大。

(2)求點到平面的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知四棱錐,底面為正方形,且底面,的平面與側(cè)面的交線為且滿足表示的面積.

(1)證明: 平面;

(2)當時,二面角的余弦值為,的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】(本小題滿分12分)

如圖,在四棱錐PABCD中,側(cè)面PAD底面ABCD,側(cè)棱PAPD=,底面ABCD為直角梯形,其中BCAD,ABAD,AD=2AB=2BC=2,OAD中點.

(Ⅰ)求證:PO平面ABCD;

(Ⅱ)求異面直線PBCD所成角的余弦值;

(Ⅲ)求點A到平面PCD的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在底面為矩形的四棱錐中, .

(1)證明:平面平面;

(2)若異面直線所成角為, , ,求二面角的大小.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的中心在坐標原點,焦點在軸上,短軸長為,且兩個焦點和短軸的兩個端點恰為一個正方形的頂點,過右焦點軸不垂直的直線交橢圓于 兩點.

Ⅰ)求橢圓的方程.

Ⅱ)當直線的斜率為時,求的面積.

Ⅲ)在線段上是否存在點,使得經(jīng) 為領(lǐng)邊的平行四邊形是菱形?若存在,求出的取值范圍;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)函數(shù),是定義域為的奇函數(shù).

(1)確定的值;

(2)若,函數(shù),,求的最小值;

(3)若,是否存在正整數(shù),使得恒成立?若存在,請求出所有的正整數(shù);若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案