【題目】(本小題滿分12分)

如圖,在四棱錐PABCD中,側(cè)面PAD底面ABCD,側(cè)棱PAPD=,底面ABCD為直角梯形,其中BCAD,ABAD,AD=2AB=2BC=2OAD中點(diǎn).

(Ⅰ)求證:PO平面ABCD;

(Ⅱ)求異面直線PBCD所成角的余弦值;

(Ⅲ)求點(diǎn)A到平面PCD的距離.

【答案】(1)同解析(2)異面直線PBCD所成的角的余弦值為.3)點(diǎn)A到平面PCD的距離d

【解析】解法一:

)證明:在PAD卡中PAPDOAD中點(diǎn),所以POAD.

又側(cè)面PAD底面ABCD,平面PAD平面ABCDAD,PO平面PAD,

所以PO平面ABCD.

)連結(jié)BO,在直角梯形ABCD中,BCAD,AD=2AB=2BC,

ODBCODBC,所以四邊形OBCD是平行四邊形,

所以OBDC.

由()知POOBPBO為銳角,

所以PBO是異面直線PBCD所成的角.

因?yàn)?/span>AD2AB2BC2,在Rt△AOB中,AB1,AO1,所以OB,

Rt△POA中,因?yàn)?/span>AP,AO1,所以OP1

Rt△PBO中,PB,

cos∠PBO=,

所以異面直線PBCD所成的角的余弦值為.

(Ⅲ)

由()得CDOB,

Rt△POC中,PC,

所以PCCDDPSPCD=·2=.

S△=

設(shè)點(diǎn)A到平面PCD的距離h,

VP-ACD=VA-PCD,

SACD·OPSPCD·h

×1×1××h,

解得h.

解法二:

)同解法一,

)以O為坐標(biāo)原點(diǎn),的方向分別為x軸、y軸、z軸的正方向,建立空間直角坐標(biāo)系O-xyz.

A0,-10),B1-1,0),C10,0),

D01,0),P0,0,1.

所以=(-1,1,0),=(t-1,-1),

=,

所以異面直線PBCD所成的角的余弦值為,

)設(shè)平面PCD的法向量為n=(x0,y0,x0),

由()知=-1,0,1),=(-1,1,0),

n·0,所以 -x0+ x0=0,

n·0, -x0+ y0=0, 

x0=y0=x0, 

x0=1,得平面的一個(gè)法向量為n=(1,1,1).

=(1,1,0).

從而點(diǎn)A到平面PCD的距離d

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)的內(nèi)角所對(duì)的邊分別是,且的等差中項(xiàng).

(Ⅰ)求角

(Ⅱ)設(shè),求周長(zhǎng)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知 ,設(shè)命題 :指數(shù)函數(shù) 上單調(diào)遞增.命題 :函數(shù) 的定義域?yàn)? .若“ ”為假,“ ”為真,求 的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直四棱柱 的所有棱長(zhǎng)均為2, 中點(diǎn).

(Ⅰ)求證: 平面 ;
(Ⅱ)若 ,求平面 與平面 所成銳二面角的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓 的兩個(gè)焦點(diǎn)分別為 , ,且經(jīng)過(guò)點(diǎn) .
(Ⅰ)求橢圓 的標(biāo)準(zhǔn)方程;
(Ⅱ) 的頂點(diǎn)都在橢圓 上,其中 關(guān)于原點(diǎn)對(duì)稱,試問(wèn) 能否為正三角形?并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知圓經(jīng)過(guò)兩點(diǎn),且圓心在直線.

)求圓的標(biāo)準(zhǔn)方程;

)設(shè)直線經(jīng)過(guò)點(diǎn),且與圓相交所得弦長(zhǎng)為,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知 .
(Ⅰ)對(duì)一切 恒成立,求實(shí)數(shù) 的取值范圍;
(Ⅱ)證明:對(duì)一切 ,都有 成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】2015年一交警統(tǒng)計(jì)了某路段過(guò)往車輛的車速大小與發(fā)生的交通事故次數(shù),得到如下表所示的數(shù)據(jù):

(1)請(qǐng)畫(huà)出上表數(shù)據(jù)的散點(diǎn)圖;

(2)請(qǐng)根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出關(guān)于的線性回歸方程;

(3)試根據(jù)(2)求出的線性回歸方程,預(yù)測(cè)在2016年該路段路況及相關(guān)安全設(shè)施等不變的情況下,車速達(dá)到110時(shí),可能發(fā)生的交通事故次數(shù).

(附:,,其中為樣本平均值)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知?jiǎng)狱c(diǎn)P(x,y)(其中y )到x軸的距離比它到點(diǎn)F(0,1)的距離少1.
(1)求動(dòng)點(diǎn)P的軌跡方程;
(2)若直線l:x-y+1=0與動(dòng)點(diǎn)P的軌跡交于A、B兩點(diǎn),求△OAB的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案