【題目】(本小題滿分12分)
如圖,在四棱錐P—ABCD中,側(cè)面PAD⊥底面ABCD,側(cè)棱PA=PD=,底面ABCD為直角梯形,其中BC∥AD,AB⊥AD,AD=2AB=2BC=2,O為AD中點(diǎn).
(Ⅰ)求證:PO⊥平面ABCD;
(Ⅱ)求異面直線PB與CD所成角的余弦值;
(Ⅲ)求點(diǎn)A到平面PCD的距離.
【答案】(1)同解析(2)異面直線PB與CD所成的角的余弦值為.(3)點(diǎn)A到平面PCD的距離d=
【解析】解法一:
(Ⅰ)證明:在△PAD卡中PA=PD,O為AD中點(diǎn),所以PO⊥AD.
又側(cè)面PAD⊥底面ABCD,平面PAD∩平面ABCD=AD,PO平面PAD,
所以PO⊥平面ABCD.
(Ⅱ)連結(jié)BO,在直角梯形ABCD中,BC∥AD,AD=2AB=2BC,
有OD∥BC且OD=BC,所以四邊形OBCD是平行四邊形,
所以OB∥DC.
由(Ⅰ)知PO⊥OB,∠PBO為銳角,
所以∠PBO是異面直線PB與CD所成的角.
因?yàn)?/span>AD=2AB=2BC=2,在Rt△AOB中,AB=1,AO=1,所以OB=,
在Rt△POA中,因?yàn)?/span>AP=,AO=1,所以OP=1,
在Rt△PBO中,PB=,
cos∠PBO=,
所以異面直線PB與CD所成的角的余弦值為.
(Ⅲ)
由(Ⅱ)得CD=OB=,
在Rt△POC中,PC=,
所以PC=CD=DP,S△PCD=·2=.
又S△=
設(shè)點(diǎn)A到平面PCD的距離h,
由VP-ACD=VA-PCD,
得S△ACD·OP=S△PCD·h,
即×1×1=××h,
解得h=.
解法二:
(Ⅰ)同解法一,
(Ⅱ)以O為坐標(biāo)原點(diǎn),的方向分別為x軸、y軸、z軸的正方向,建立空間直角坐標(biāo)系O-xyz.
則A(0,-1,0),B(1,-1,0),C(1,0,0),
D(0,1,0),P(0,0,1).
所以=(-1,1,0),=(t,-1,-1),
∞〈、〉=,
所以異面直線PB與CD所成的角的余弦值為,
(Ⅲ)設(shè)平面PCD的法向量為n=(x0,y0,x0),
由(Ⅱ)知=(-1,0,1),=(-1,1,0),
則n·=0,所以 -x0+ x0=0,
n·=0, -x0+ y0=0,
即x0=y0=x0,
取x0=1,得平面的一個(gè)法向量為n=(1,1,1).
又=(1,1,0).
從而點(diǎn)A到平面PCD的距離d=
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)的內(nèi)角所對(duì)的邊分別是,且是與的等差中項(xiàng).
(Ⅰ)求角;
(Ⅱ)設(shè),求周長(zhǎng)的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知 ,設(shè)命題 :指數(shù)函數(shù) ≠ 在 上單調(diào)遞增.命題 :函數(shù) 的定義域?yàn)? .若“ ”為假,“ ”為真,求 的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直四棱柱 的所有棱長(zhǎng)均為2, 為 中點(diǎn).
(Ⅰ)求證: 平面 ;
(Ⅱ)若 ,求平面 與平面 所成銳二面角的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓 的兩個(gè)焦點(diǎn)分別為 , ,且經(jīng)過(guò)點(diǎn) .
(Ⅰ)求橢圓 的標(biāo)準(zhǔn)方程;
(Ⅱ) 的頂點(diǎn)都在橢圓 上,其中 關(guān)于原點(diǎn)對(duì)稱,試問(wèn) 能否為正三角形?并說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓經(jīng)過(guò)兩點(diǎn),且圓心在直線上.
(Ⅰ)求圓的標(biāo)準(zhǔn)方程;
(Ⅱ)設(shè)直線經(jīng)過(guò)點(diǎn),且與圓相交所得弦長(zhǎng)為,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知 .
(Ⅰ)對(duì)一切 恒成立,求實(shí)數(shù) 的取值范圍;
(Ⅱ)證明:對(duì)一切 ,都有 成立.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】2015年一交警統(tǒng)計(jì)了某路段過(guò)往車輛的車速大小與發(fā)生的交通事故次數(shù),得到如下表所示的數(shù)據(jù):
(1)請(qǐng)畫(huà)出上表數(shù)據(jù)的散點(diǎn)圖;
(2)請(qǐng)根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出關(guān)于的線性回歸方程;
(3)試根據(jù)(2)求出的線性回歸方程,預(yù)測(cè)在2016年該路段路況及相關(guān)安全設(shè)施等不變的情況下,車速達(dá)到110時(shí),可能發(fā)生的交通事故次數(shù).
(附:,,其中為樣本平均值)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知?jiǎng)狱c(diǎn)P(x,y)(其中y )到x軸的距離比它到點(diǎn)F(0,1)的距離少1.
(1)求動(dòng)點(diǎn)P的軌跡方程;
(2)若直線l:x-y+1=0與動(dòng)點(diǎn)P的軌跡交于A、B兩點(diǎn),求△OAB的面積.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com