【題目】“雙十一”期間,某淘寶店主對其商品的上架時間(小時)和銷售量(件)的關系作了統(tǒng)計,得到了如下數(shù)據(jù)并研究.
上架時間 | 2 | 4 | 6 | 8 | 10 | 12 |
銷售量 | 64 | 138 | 205 | 285 | 360 | 430 |
(1)求表中銷售量的平均數(shù)和中位數(shù);
(2)① 作出散點圖,并判斷變量與是否線性相關?若研究的方案是先根據(jù)前5組數(shù)據(jù)求線性回歸方程,再利用第6組數(shù)據(jù)進行檢驗,求線性回歸方程;
②若根據(jù)①中線性回歸方程得到商品上架12小時的銷售量的預測值與檢測值不超過3件,則認為得到的線性回歸方程是理想的,試問:①中的線性回歸方程是否理想.
附:線性回歸方程中, .
【答案】(1)平均數(shù)為;中位數(shù)為;(2)①.答案見解析;②.①中的線性回歸方程是理想的.
【解析】試題分析: 根據(jù)所給的數(shù)據(jù)求得銷售量的平均數(shù)和中位數(shù);
根據(jù)所給的數(shù)據(jù)作出散點圖,由散點圖發(fā)現(xiàn)這些點大致在一條直線附近,故變量與是線性相關的;計算出回歸系數(shù),求出線性回歸方程,將代入到線性回歸方程,即可得到結論
解析:(1)由題得,平均數(shù)為
;中位數(shù)為;
(2)①作出散點圖如圖所示:
由散點圖發(fā)現(xiàn)這些點大致在一條直線附近,故變量與是線性相關的.
由前5組數(shù)據(jù)計算,得, ,
∴,
∴線性回歸方程為;
②將代入,得,
∵,
故①中的線性回歸方程是理想的.
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在三棱錐中,平面平面,為等邊三角形,,且,O,M分別為,的中點.
(Ⅰ)求證:平面;
(Ⅱ)設是線段上一點,滿足平面平面,試說明點的位置;
(Ⅲ)求三棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】給出下列命題:
(1)終邊在y軸上的角的集合是;
(2)把函數(shù)f(x)=2sin2x的圖象沿x軸方向向左平移個單位后,得到的函數(shù)解析式可以表示成f(x)=2sin;
(3)函數(shù)f(x)=sinx+的值域是[-1,1];
(4)已知函數(shù)f(x)=2cosx,若存在實數(shù)x1,x2,使得對任意的實數(shù)x都有成立,則的最小值為2π.
其中正確的命題的序號為________.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的離心率為,且短軸長為2.
(1)求橢圓的標準方程;
(2)已知分別為橢圓的左右頂點, ,,且,直線與分別與橢圓交于兩點,
(i)用表示點的縱坐標;
(ii)若面積是面積的5倍,求的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】疫情期間口罩需求量大增,某醫(yī)療器械公司開始生產KN95口罩,并且對所生產口罩的質量按指標測試分數(shù)進行劃分,其中分數(shù)不小于70的為合格品,否則為不合格品,現(xiàn)隨機抽取100件口罩進行檢測,其結果如下:
(1)根據(jù)表中數(shù)據(jù),估計該公司生產口罩的不合格率;
(2)根據(jù)表中數(shù)據(jù),估計該公司口罩的平均測試分數(shù);
(3)若用分層抽樣的方式按是否合格從所生產口罩中抽取5件,再從這5件口罩中隨機抽取2件,求這2件口罩全是合格品的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(1)當時,求函數(shù)的極值;
(2)設函數(shù)在處的切線方程為,若函數(shù)是上的單調增函數(shù),求的值;
(3)是否存在一條直線與函數(shù)的圖象相切于兩個不同的點?并說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)()在處的切線與直線平行.
(1)求的值并討論函數(shù)在上的單調性;
(2)若函數(shù)(為常數(shù))有兩個零點()
①求實數(shù)的取值范圍;
②求證:
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】2017年5月27日當今世界圍棋排名第一的柯潔在與的人機大戰(zhàn)中中盤棄子認輸,至此柯潔與的三場比賽全部結束,柯潔三戰(zhàn)全負,這次人機大戰(zhàn)再次引發(fā)全民對圍棋的關注,某學校社團為調查學生學習圍棋的情況,隨機抽取了100名學生進行調查,根據(jù)調查結果繪制的學生日均學習圍棋時間的頻率分布直方圖(如圖所示),將日均學習圍棋時間不低于40分鐘的學生稱為“圍棋迷”.
(1)請根據(jù)已知條件完成下面列聯(lián)表,并據(jù)此資料你是否有95%的把握認為“圍棋迷”與性別有關?
非圍棋迷 | 圍棋迷 | 合計 | |
男 | |||
女 | 10 | 55 | |
合計 |
(2)為了進一步了解“圍棋迷”的圍棋水平,從“圍棋迷”中按性別分層抽樣抽取5名學生組隊參加校際交流賽,首輪該校需派兩名學生出賽,若從5名學生中隨機抽取2人出賽,求2人恰好一男一女的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】《周髀算經》 是我國古代的天文學和數(shù)學著作。其中一個問題的大意為:一年有二十四個節(jié)氣(如圖),每個節(jié)氣晷長損益相同(即物體在太陽的照射下影子長度的增加量和減少量相同).若冬至晷長一丈三尺五寸,夏至晷長一尺五寸(注:ー丈等于十尺,一尺等于十寸),則立冬節(jié)氣的晷長為( )
A. 九尺五寸 B. 一丈五寸 C. 一丈一尺五寸 D. 一丈六尺五寸
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com