【題目】三國(guó)時(shí)代吳國(guó)數(shù)學(xué)家趙爽所注《周髀算經(jīng)》中給出了勾股定理的絕妙證明,下面是趙爽的弦圖及注文,弦圖是一個(gè)以勾股之弦為邊的正方形,其面積稱為弦實(shí),圖中包含四個(gè)全等的勾股形及一個(gè)小正方形,分別涂成紅(朱)色及黃色,其面積稱為朱實(shí)、黃實(shí),利用×+(股-勾)2=4×朱實(shí)+黃實(shí)=弦實(shí),化簡(jiǎn)得勾2+2=2,設(shè)勾股形中勾股比為,若向弦圖內(nèi)隨機(jī)拋擲1000顆圖釘(大小忽略不計(jì)),則落在黃色圖形內(nèi)的圖釘數(shù)大約為(

A.134B.866C.300D.188

【答案】A

【解析】

設(shè)三角形的直角邊分別為,利用幾何概型得出圖釘落在小正方形內(nèi)的概率即可得出結(jié)論.

設(shè)勾股形的勾股數(shù)分別為,則弦為2,

故而大正方形的面積為4,小正方形的面積為:

所以圖釘落在黃色圖形內(nèi)的概率為:

故落在黃色圖形內(nèi)的圖釘數(shù)大約為:

故選:A

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為準(zhǔn)確把握市場(chǎng)規(guī)律,某公司對(duì)其所屬商品售價(jià)進(jìn)行市場(chǎng)調(diào)查和模型分析,發(fā)現(xiàn)該商品一年內(nèi)每件的售價(jià)按月近似呈的模型波動(dòng)(為月份),已知3月份每件售價(jià)達(dá)到最高90元,直到7月份每件售價(jià)變?yōu)樽畹?/span>50.則根據(jù)模型可知在10月份每件售價(jià)約為_____.(結(jié)果保留整數(shù))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線,直線與拋物線交于兩點(diǎn).

(Ⅰ)若,求以為直徑的圓被軸所截得的弦長(zhǎng);

(Ⅱ)分別過點(diǎn)作拋物線的切線,兩條切線交于點(diǎn),求面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在平面直角坐標(biāo)系,將曲線上的每一個(gè)點(diǎn)的橫坐標(biāo)保持不變,縱坐標(biāo)縮短為原來的,得到曲線,以坐標(biāo)原點(diǎn)為極點(diǎn), 軸的正半軸為極軸,建立極坐標(biāo)系, 的極坐標(biāo)方程為

(Ⅰ)求曲線的參數(shù)方程;

(Ⅱ)過原點(diǎn)且關(guān)于軸對(duì)稱的兩條直線分別交曲線、,且點(diǎn)在第一象限,當(dāng)四邊形的周長(zhǎng)最大時(shí),求直線的普通方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,CDAB,,,,E的中點(diǎn).

1)求證:

2)求P到平面的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,角A,B,C所對(duì)的邊分別為a,b,c,且滿足bcosA﹣asinB=0.

(1)求A;

(2)已知a=2,B=,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線C:x24pyp為大于2的質(zhì)數(shù))的焦點(diǎn)為F,過點(diǎn)F且斜率為k(k0)的直線交CA,B兩點(diǎn),線段AB的垂直平分線交y軸于點(diǎn)E,拋物線C在點(diǎn)A,B處的切線相交于點(diǎn)G.記四邊形AEBG的面積為S.

1)求點(diǎn)G的軌跡方程;

2)當(dāng)點(diǎn)G的橫坐標(biāo)為整數(shù)時(shí),S是否為整數(shù)?若是,請(qǐng)求出所有滿足條件的S的值;若不是,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某工廠生產(chǎn)某種電子產(chǎn)品,每件產(chǎn)品不合格的概率均為,現(xiàn)工廠為提高產(chǎn)品聲譽(yù),要求在交付用戶前每件產(chǎn)品都通過合格檢驗(yàn),已知該工廠的檢驗(yàn)儀器一次最多可檢驗(yàn)件該產(chǎn)品,且每 件產(chǎn)品檢驗(yàn)合格與否相互獨(dú)立.若每件產(chǎn)品均檢驗(yàn)一次,所需檢驗(yàn)費(fèi)用較多,該工廠提出以下檢 驗(yàn)方案:將產(chǎn)品每個(gè)一組進(jìn)行分組檢驗(yàn),如果某一組產(chǎn)品檢驗(yàn)合格,則說明該組內(nèi)產(chǎn)品均合格,若檢驗(yàn)不合格,則說明該組內(nèi)有不合格產(chǎn)品,再對(duì)該組內(nèi)每一件產(chǎn)品單獨(dú)進(jìn)行檢驗(yàn),如此,每一組產(chǎn)品只需檢驗(yàn)次或次.設(shè)該工廠生產(chǎn)件該產(chǎn)品,記每件產(chǎn)品的平均檢驗(yàn)次 數(shù)為

1)求的分布列及其期望;

2)(i)試說明,當(dāng)越小時(shí),該方案越合理,即所需平均檢驗(yàn)次數(shù)越少;

ii)當(dāng)時(shí),求使該方案最合理時(shí)的值及件該產(chǎn)品的平均檢驗(yàn)次數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知.

1)討論函數(shù)_f(x)的單調(diào)性;

2)若 ,且2 個(gè)不同的極值點(diǎn) ,求證:.

查看答案和解析>>

同步練習(xí)冊(cè)答案