A. | $({\frac{4}{5},+∞})$ | B. | $[{\frac{4}{5},+∞})$ | C. | $[{\frac{1}{3},+∞})$ | D. | (-∞,1)∪(0,+∞) |
分析 由題意可得f′(x)≤0在x∈(1,2)上恒成立,即x2-2ax-a≤0成立,令g(x)=x2-2ax-a,得到關(guān)于a的不等式組,即可得出結(jié)論.
解答 解:f′(x)=x-2a-$\frac{a}{x}$,
∴f′(x)≤0在x∈(1,2)上恒成立,
即x-2a-$\frac{a}{x}$≤0,在x∈(1,2)上恒成立,
即x2-2ax-a≤0,
令g(x)=x2-2ax-a,
則$\left\{\begin{array}{l}{g(1)≤0}\\{g(2)≤0}\end{array}\right.$,即 $\left\{\begin{array}{l}{1-3a≤0}\\{4-5a≤0}\end{array}\right.$,
解得a≥$\frac{4}{5}$,
故選:B.
點(diǎn)評 本題考查學(xué)生利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性知識及轉(zhuǎn)化劃歸思想的運(yùn)用能力,屬中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{9}{16}$ | B. | $\frac{5}{4}$ | C. | $\frac{21}{16}$ | D. | $\frac{11}{8}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ①② | B. | ②③ | C. | ③④ | D. | ①④ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $-\frac{1}{4}$ | B. | -4 | C. | 3 | D. | $-\frac{1}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $-\frac{3}{5}$ | B. | $-\frac{1}{5}$ | C. | $\frac{1}{5}$ | D. | $\frac{3}{5}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com