函數(shù)f(x)=lnx+2x-6的零點(diǎn)有
 
個(gè),在區(qū)間
 

A、(0,1)B、(1,2)C、(2,3)D、(3,4)
考點(diǎn):二分法的定義
專題:計(jì)算題,函數(shù)的性質(zhì)及應(yīng)用
分析:由題意可知函數(shù)f(x)=lnx+2x-6在定義域上單調(diào)遞增,再由f(2)=ln2+4-6=ln2-2<0,f(3)=ln3+6-6=ln3>0;從而確定零點(diǎn)個(gè)數(shù)及位置.
解答: 解:∵函數(shù)f(x)=lnx+2x-6在定義域上單調(diào)遞增,
又∵f(2)=ln2+4-6=ln2-2<0,
f(3)=ln3+6-6=ln3>0;
故函數(shù)f(x)=lnx+2x-6的零點(diǎn)有1個(gè),
在區(qū)間(2,3)上;
故答案為:1,C.
點(diǎn)評(píng):本題考查了函數(shù)的零點(diǎn)的個(gè)數(shù)的判斷及位置,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

正三棱柱ABC-A′B′C′中,側(cè)棱長(zhǎng)為2,底面邊長(zhǎng)為1,點(diǎn)M是BC的中點(diǎn),在直線CC′上求一點(diǎn)N,使得MN⊥AB.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

求點(diǎn)P(2,1)到直線(2k-1)x-(k+3)y-(k-11)=0的最遠(yuǎn)距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

直線
x=1+2t
y=2+t
(t為參數(shù))被圓x2+y2=9截得的弦長(zhǎng)等于(  )
A、
12
5
B、
12
5
2
C、
9
5
2
D、
9
5
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)a=(
1
2
)
1
3
,b=(
1
3
)
1
2
,c=ln
3
π
,則(  )
A、c<a<b
B、c<b<a
C、a<b<c
D、b<a<c

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

數(shù)列{an}中,a1=a2=1,an+2=an+1+an,它的通項(xiàng)公式為an=
1
5
[(
1+
5
2
n-(
1-
5
2
n],根據(jù)上述結(jié)論,可以知道不超過(guò)實(shí)數(shù) 
1
5
1+
5
2
12的最大整數(shù)為( 。
A、144
B、143
C、144或143
D、142或143

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)正項(xiàng)數(shù)列{an}的前n項(xiàng)和是Sn,若{an}和{
Sn
}都是等差數(shù)列,且公差相等,
(1)求{an}的通項(xiàng)公式;
(2)若a1,a2,a5恰為等比數(shù)列{bn}的前三項(xiàng),記數(shù)列cn=
1
log34bn+1•log34bn+2
,數(shù)列{cn}的前n項(xiàng)和為Tn,求Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)=
sinπx,x≤0
f(x-1)+1,x>0
,則f(
5
6
)的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓的一個(gè)焦點(diǎn)為F,若橢圓上存在點(diǎn)P,滿足以橢圓短軸為直徑的圓與線段PF相切于線段PF的中點(diǎn),則該橢圓的離心率為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案