19.已知直線l:$\left\{\begin{array}{l}{x=-1+tcosα}\\{y=tsinα}\end{array}\right.$(t為參數(shù),a≥2為l的傾斜角),以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為ρ2-6ρcosθ+5=0.若直線l與曲線C相切,則α的值為$\frac{π}{6}$或$\frac{5π}{6}$.

分析 求出圓的直角坐標(biāo)方程,直線的直角坐標(biāo)方程,利用直線l與曲線C相切,列出關(guān)系式,即可求α的值.

解答 解:曲線C的直角坐標(biāo)方程為x2+y2-6x+5=0,
即(x-3)2+y2=4曲線C為圓心為(3,0),半徑為2的圓.
直線l的方程為:xsinα-ycosα+sinα=0,
∵直線l與曲線C相切,∴$\frac{|3sinα+sinα|}{\sqrt{si{n}^{2}α+co{s}^{2}α}}$=2,
即sinα=$\frac{1}{2}$,
∵α∈[0,π)∴α=$\frac{π}{6}$或$\frac{5π}{6}$,
故答案為$\frac{π}{6}$或$\frac{5π}{6}$.

點(diǎn)評 本題考查直線與圓的參數(shù)方程以及極坐標(biāo)方程的應(yīng)用,直線與圓的位置關(guān)系,三角函數(shù)的化簡求值,考查計(jì)算能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2016-2017學(xué)年河北正定中學(xué)高二上月考一數(shù)學(xué)(理)試卷(解析版) 題型:選擇題

執(zhí)行下邊的程序框圖,則輸出的等于( )

A.4 B.5 C.6 D.7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.在△ABC中,|AB|=1,|AC|=$\sqrt{3}$,若|$\overrightarrow{AB}$+$\overrightarrow{AC}$|=|$\overrightarrow{BC}$|,則其形狀為③;若?λ∈R使|λ$\overrightarrow{AB}$-$\overrightarrow{AC}$|≤$\sqrt{2}$成立,則$\overrightarrow{AB}$•$\overrightarrow{AC}$的范圍是$(-\sqrt{3},-1]∪[1,\sqrt{3})$
(①銳角三角形 ②鈍角三角形  ③直角三角形,在橫線上填上序號(hào)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.某同學(xué)報(bào)名參加“瘋狂的麥咭”的選拔.已知在備選的10道試題中,該同學(xué)能答對其中的6題,規(guī)定每次考試都從備選題中隨機(jī)抽出3題進(jìn)行測試(必須3題全部答完),至少答對2題才能入選.
(Ⅰ)求該同學(xué)答對試題數(shù)ξ的概率分布列及數(shù)學(xué)期望;
(Ⅱ)設(shè)η為該同學(xué)答對試題數(shù)與該同學(xué)答錯(cuò)試題數(shù)之差的平方,記“函數(shù)$f(x)=|η-\frac{1}{2}{|^x}$在定義域內(nèi)單調(diào)遞增”為事件C,求事件C的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.如圖,在四棱錐P-ABCD中,E為AD上一點(diǎn),面PAD⊥面ABCD,四邊形
BCDE為矩形∠PAD=60°,PB=2$\sqrt{3}$,PA=ED=2AE=2.
(Ⅰ)求證:CB⊥面PEB
(Ⅱ) 已知$\overrightarrow{PF}=λ\overrightarrow{PC}({λ∈R})$,且PA∥面BEF,求λ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知橢圓:C1:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率為e=$\frac{\sqrt{6}}{3}$,過C1的左焦點(diǎn)F1的直線l:x-y+2=0被圓C2:(x-3)2+(y-3)2=r2(r>0)截得的弦長為2$\sqrt{2}$.
(1)求橢圓C1的方程;
(2)設(shè)C1的右焦點(diǎn)為F2,在圓C2上是否存在點(diǎn)P,滿足|PF1|=$\frac{{a}^{2}}{^{2}}$|PF2|,若存在,指出有幾個(gè)這樣的點(diǎn)(不必求出點(diǎn)的坐標(biāo));若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.如圖,在五棱錐P-ABCDE中,PA⊥平面ABCDE,AB∥CD,AC∥ED,AE∥BC,∠ABC=45°,AB=2$\sqrt{2}$,BC=2AE=4,三角形PAB是等腰三角形.
(1)求證:平面PCD⊥平面PAC;
(2)求直線PB與平面PCD所成角的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.清華大學(xué)自主招生考試題中要求考生從A,B,C三道題中任選一題作答,考試結(jié)束后,統(tǒng)計(jì)數(shù)據(jù)顯示共有600名學(xué)生參加測試,選擇A,B,C三題答卷數(shù)如下表:
ABC
答卷數(shù)180300120
(Ⅰ)負(fù)責(zé)招生的教授為了解參加測試的學(xué)生答卷情況,現(xiàn)用分層抽樣的方法從600份答案中抽出若干份答卷,其中從選擇A題作答的答卷中抽出了3份,則應(yīng)分別從選擇B,C題作答的答卷中各抽出多少份?
(Ⅱ)測試后的統(tǒng)計(jì)數(shù)據(jù)顯示,A題的答卷得優(yōu)的有60份,若以頻率作為概率,在(Ⅰ)問中被抽出的選擇A題作答的答卷中,記其中得優(yōu)的份數(shù)為X,求X的分布列及其數(shù)學(xué)期望E(X).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知函數(shù)f(x)=$\frac{{{{(2x-m)}^2}}}{2-x}$x∈(0,1],它的一個(gè)極值點(diǎn)是x=$\frac{1}{2}$
(Ⅰ)求m的值及f(x)在x∈(0,1]上的值域;
(Ⅱ)設(shè)函數(shù) g(x)=ex+$\sqrt{x}$-2x,求證:函數(shù)y=f(x)與y=g(x)的圖象在x∈(0,1]上沒有公共點(diǎn).

查看答案和解析>>

同步練習(xí)冊答案