如圖,已知均在⊙O上,且為⊙O的直徑。
(Ⅰ)求的值;
(Ⅱ)若⊙O的半徑為,交于點(diǎn),且
為弧的三等分點(diǎn),求的長.

    

解析試題分析(Ⅰ)注意利用圓心角與圓周角間的關(guān)系, (Ⅱ)先求出角再解直角三角形.
試題解析:(Ⅰ)連接,則


.                  5分
(Ⅱ)連接,因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/1c/5/1ezee3.png" style="vertical-align:middle;" />為⊙O的直徑,
所以,又的三等分點(diǎn),所以
. 7分
所以.因?yàn)椤袿的半徑為,即,所以.
中,.
.                                        10分
考點(diǎn):圓的性質(zhì)及應(yīng)用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,的一條切線,切點(diǎn)為,都是的割線,已知

(1)證明:
(2)證明:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,直線為圓的切線,切點(diǎn)為,直徑,連接于點(diǎn).

(Ⅰ)證明:
(Ⅱ)求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,AB是圓O的直徑,C,D是圓O上兩點(diǎn),AC與BD相交于點(diǎn)E,GC,GD是圓O的切線,點(diǎn)F在DG的延長線上,且。求證:
(Ⅰ)D、E、C、F四點(diǎn)共圓;       (Ⅱ)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

幾何證明選講.
如圖,直線過圓心,交⊙,直線交⊙ (不與重合),直線與⊙相切于,交,且與垂直,垂足為,連結(jié).

求證:(1);      
(2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,AB是⊙O的直徑,C、E為⊙O上的點(diǎn),CA平分∠BAE,CF⊥AB, F是垂足,CD⊥AE,交AE延長線于D.

(I)求證:DC是⊙O的切線;
(Ⅱ)求證:AF.FB=DE.DA.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,CD為△ABC外接圓的切線,AB的延長線交直線CD于點(diǎn)D,E、F分別為弦AB與弦AC上的點(diǎn),
且BCAE=DCAF,B、E、F、C四點(diǎn)共圓.

(Ⅰ)證明:CA是△ABC外接圓的直徑;
(Ⅱ)若DB=BE=EA,求過B、E、F、C四點(diǎn)的圓的面積與△ABC外接圓面積的比值.                       

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,,四點(diǎn)共圓,的延長線交于點(diǎn),點(diǎn)的延長線上.

(1)若,,求的值;
(2)若,求證:線段,,成等比數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分10分)
如圖,已知的切線,為切點(diǎn),的割線,與交于兩點(diǎn),圓心的內(nèi)部,點(diǎn)的中點(diǎn).

(1)證明四點(diǎn)共圓;
(2)求的大。

查看答案和解析>>

同步練習(xí)冊答案