設(shè)直線與雙曲線交于A、B,且以AB為直徑的圓過原點(diǎn),求點(diǎn)的軌跡方程.
2y2-x2=1(x2<3).
解析試題分析:將直線與雙曲線方程聯(lián)立,消去y(或x),得到關(guān)于x的一元二次方程。由題意知方程有兩根,故二次項(xiàng)系數(shù)不為0,且判別式大于0,解出a的范圍,即所求軌跡方程的定義域。根據(jù)韋達(dá)定理得到兩根之和,兩根之積(整體計(jì)算比計(jì)算出兩個(gè)根要簡(jiǎn)單)。根據(jù)且以AB為直徑的圓過原點(diǎn),可得直線AO和直線BO垂直,可利用斜率之積等于列式計(jì)算,但這種情況需對(duì)斜率存在與否進(jìn)行討論。為了省去討論的麻煩可用向量問題來解決。詳見解析。
試題解析:解:聯(lián)立直線與雙曲線方程得,消去y得:(a2-3)x2+2abx+b2+1=0.
∵直線與雙曲線交于A、B兩點(diǎn),∴⇒a2<3.
設(shè)A(x1,y1),B(x2,y2)則x1+x2=,x1·x2=.
由⊥得x1x2+y1y2=0,又y1·y2=(ax1+b)(ax2+b)=a2x1x2+ab(x1+x2)+b2,
∴有+a2·-+b2=0.
化簡(jiǎn)得:a2-2b2=-1.故P點(diǎn)(a,b)的軌跡方程為2y2-x2=1(x2<3).
考點(diǎn):直接法求軌跡方程
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知是拋物線上的兩個(gè)點(diǎn),點(diǎn)的坐標(biāo)為,直線的斜率為k, 為坐標(biāo)原點(diǎn).
(Ⅰ)若拋物線的焦點(diǎn)在直線的下方,求k的取值范圍;
(Ⅱ)設(shè)C為W上一點(diǎn),且,過兩點(diǎn)分別作W的切線,記兩切線的交點(diǎn)為,求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知拋物線,直線與E交于A、B兩點(diǎn),且,其中O為原點(diǎn).
(1)求拋物線E的方程;
(2)點(diǎn)C坐標(biāo)為,記直線CA、CB的斜率分別為,證明:為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓:.
(1)橢圓的短軸端點(diǎn)分別為(如圖),直線分別與橢圓交于兩點(diǎn),其中點(diǎn)滿足,且.
①證明直線與軸交點(diǎn)的位置與無關(guān);
②若∆面積是∆面積的5倍,求的值;
(2)若圓:.是過點(diǎn)的兩條互相垂直的直線,其中交圓于、兩點(diǎn),交橢圓于另一點(diǎn).求面積取最大值時(shí)直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知雙曲線方程2x2-y2=2.
(1)求以A(2,1)為中點(diǎn)的雙曲線的弦所在的直線方程;
(2)過點(diǎn)(1,1)能否作直線l,使l與雙曲線交于Q1,Q2兩點(diǎn),且Q1,Q2兩點(diǎn)的中點(diǎn)為(1,1)?如果存在,求出它的方程;如果不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,已知橢圓的長(zhǎng)軸為AB,過點(diǎn)B的直線與
軸垂直,橢圓的離心率,F為橢圓的左焦點(diǎn),且
(1)求此橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)P是此橢圓上異于A,B的任意一點(diǎn), 軸,H為垂足,延長(zhǎng)HP到點(diǎn)Q,使得HP=PQ,連接AQ并延長(zhǎng)交直線于點(diǎn),為的中點(diǎn),判定直線與以為直徑的圓O位置關(guān)系。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓的左右兩焦點(diǎn)分別為,是橢圓上一點(diǎn),且在軸上方,.
(1)求橢圓的離心率的取值范圍;
(2)當(dāng)取最大值時(shí),過的圓的截軸的線段長(zhǎng)為6,求橢圓的方程;
(3)在(2)的條件下,過橢圓右準(zhǔn)線上任一點(diǎn)引圓的兩條切線,切點(diǎn)分別為.試探究直線是否過定點(diǎn)?若過定點(diǎn),請(qǐng)求出該定點(diǎn);否則,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,斜率為的直線過拋物線的焦點(diǎn),與拋物線交于兩點(diǎn)A、B, M為拋物線弧AB上的動(dòng)點(diǎn).
(Ⅰ)若,求拋物線的方程;
(Ⅱ)求△ABM面積的最大值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com