【題目】已知函數(shù)f(x)=|x﹣a|,g(x)=x2+2ax+1(a為正實(shí)數(shù)),滿足f(0)=g(0);
函數(shù)F(x)=f(x)+g(x)+b定義域?yàn)?/span>D.
(1)求a的值;
(2)若存在x0∈D,使F(x0)=x0成立,求實(shí)數(shù)b的取值范圍;
(3)若n為正整數(shù),證明:<4.
(參考數(shù)據(jù):lg3=0.3010, =0.1342,=0.0281, =0.0038)
【答案】(1) ;(2) ;(3)見解析.
【解析】
(1)由f(0)=g(0),解方程可得a=1;
(2)求得f(x)+g(x)+b的解析式,由條件討論x≥1,x<1時(shí),分離參數(shù),解不等式可得b的范圍;(3)設(shè),由n為正整數(shù),化簡(jiǎn)G(n),討論G(n)的單調(diào)性,即可得證.
(1)∵f(0)=g(0),即|a|=1,又a>0,∴a=1.
(2)由(1)知,f(x)+g(x)+b=.
當(dāng)x≥1時(shí),有x2+3x+b=x,即b=﹣x2﹣2x=﹣(x+1)2+1.
∵x≥1,∴﹣(x+1)2+1≤﹣3,此時(shí)b≤﹣3.
當(dāng)x<1時(shí),有x2+x+2+b=x,即b=﹣x2﹣2
∵x<1,∴﹣x2﹣2≤﹣2,此時(shí)b≤﹣2.
故要使得f(x)+g(x)+b在其定義域內(nèi)存在不動(dòng)點(diǎn),
則實(shí)數(shù)b的取值范圍應(yīng)(﹣∞,﹣2].
(3)證明:設(shè),
由為正整數(shù), 所以,
所以,
當(dāng)時(shí),,即,
即,所以,
由于n為正整數(shù),因此當(dāng)1≤n≤3時(shí),G(n)單調(diào)遞增;
當(dāng)n≥4時(shí),G(n)單調(diào)遞減.(13分)
∴G(n)的最大值是max{G(3),G(4)}.
又,,
所以.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=x2+bx,則“b<0”是“f(f(x))的最小值與f(x)的最小值相等”的( 。
A.充分不必要條件
B.必要不充分條件
C.充分必要條件
D.既不充分也不必要條件
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知長(zhǎng)方形ABCD中,AB=2AD,M為DC的中點(diǎn),將△ADM沿AM折起,使得平面ADM⊥平面ABCM.
(1)求證:AD⊥BM;
(2)若 =2 ,求二面角E﹣AM﹣D的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)為實(shí)數(shù),函數(shù), .
(1)求的單調(diào)區(qū)間與極值;
(2)求證:當(dāng)且時(shí), .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)在同一個(gè)周期內(nèi),當(dāng)時(shí)y取最大值1,當(dāng)時(shí),y取最小值﹣1.
(1)求函數(shù)的解析式y=f(x);
(2)函數(shù)y=sinx的圖象經(jīng)過怎樣的變換可得到y=f(x)的圖象?
(3)若函數(shù)f(x)滿足方程f(x)=a(0<a<1),求在[0,2π]內(nèi)的所有實(shí)數(shù)根之和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2016年6月22日“國(guó)際教育信息化大會(huì)”在山東青島開幕.為了解哪些人更關(guān)注“國(guó)際教育信息化大會(huì)”,某機(jī)構(gòu)隨機(jī)抽取了年齡在15—75歲之間的100人進(jìn)行調(diào)查,并按年齡繪制成頻率分布直方圖,如圖所示,其分組區(qū)間為: .把年齡落在區(qū)間自和 內(nèi)的人分別稱為“青少年”和“中老年”.
關(guān)注 | 不關(guān)注 | 合計(jì) | |
青少年 | 15 | ||
中老年 | |||
合計(jì) | 50 | 50 | 100 |
(1)根據(jù)頻率分布直方圖求樣本的中位數(shù)(保留兩位小數(shù))和眾數(shù);
(2)根據(jù)已知條件完成下面的列聯(lián)表,并判斷能否有的把握認(rèn)為“中老年”比“青少年”更加關(guān)注“國(guó)際教育信息化大會(huì)”;
臨界值表:
附:參考公式
0.100 | 0.050 | 0.010 | 0.001 | |
2.706 | 3.841 | 6.635 | 10.828 |
,其中.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f( )=﹣ x3+ x2﹣m,g(x)=﹣ x3+mx2+(a+1)x+2xcosx﹣m.
(1)若曲線y=f(x)僅在兩個(gè)不同的點(diǎn)A(x1 , f(x1)),B(x1 , f(x2))處的切線都經(jīng)過點(diǎn)(2,t),求證:t=3m﹣8,或t=﹣ m3+ m2﹣m.
(2)當(dāng)x∈[0,1]時(shí),若f(x)≥g(x)恒成立,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列函數(shù)既是奇函數(shù),又在[﹣1,1]上單調(diào)遞增是( )
A.f(x)=|sinx|
B.f(x)=ln
C.f(x)= (ex﹣e﹣x)
D.f(x)=ln( ﹣x)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】有一戶農(nóng)村居民家庭實(shí)施10年收入計(jì)劃,從第 1年至7年他家的純收入y(單位:千元)的數(shù)據(jù)如下表:
(1)將題中表填寫完整,并求關(guān)于的線性回歸方程;
(2)利用(1)中的回歸方程,分析1年至7年該農(nóng)戶家庭人均純收入的變化情況,并預(yù)測(cè)該農(nóng)戶第8年的家庭人均純收入是多少.
附:回歸直線的斜率和截距的最小二乘法估計(jì)公式分別為:
,
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com