如圖,A,B,C,D是⊙O上的四個(gè)點(diǎn),過(guò)點(diǎn)B的切線與DC的延長(zhǎng)線交于點(diǎn)E.若∠BCD=110°,則∠DBE=


  1. A.
    75°
  2. B.
    70°
  3. C.
    60°
  4. D.
    55°
B
分析:利用四點(diǎn)共圓的性質(zhì)可得∠A,再利用弦切角定理即可得出∠DBE=∠A.
解答:∵A,B,C,D是⊙O上的四個(gè)點(diǎn),∴∠A+∠BCD=180°,
∵∠BCD=110°,∴∠A=70°.
∵BE與⊙O相切于點(diǎn)B,∴∠DBE=∠A=70°.
故選B.
點(diǎn)評(píng):熟練掌握四點(diǎn)共圓的性質(zhì)、弦切角定理是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

12、如圖,A,B,C,D四點(diǎn)都在平面a,b外,它們?cè)赼內(nèi)的射影A1,B1,C1,D1是平行四邊形的四個(gè)頂點(diǎn),在b內(nèi)的射影A2,B2,C2,D2在一條直線上,求證:ABCD是平行四邊形.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,A,B,C,D為空間四點(diǎn),在△ABC中,AB=2,AC=BC=
2
.等邊三角形ADB以AB為軸運(yùn)動(dòng).當(dāng)CD=
 
時(shí),面ACD⊥面ADB.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,A,B,C,D為空間四點(diǎn).在△ABC中,AB=2,AC=BC=
2

等邊三角形ADB以AB為軸運(yùn)動(dòng).
(Ⅰ)當(dāng)平面ADB⊥平面ABC時(shí),求CD;
(Ⅱ)當(dāng)△ADB轉(zhuǎn)動(dòng)時(shí),是否總有AB⊥CD?證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,A、B、C、D是某煤礦的四個(gè)采煤點(diǎn),l是公路,圖中所標(biāo)線段為道路,ABQP、BCRQ、CDSR近似于正方形.已知A、B、C、D四個(gè)采煤點(diǎn)每天的采煤量之比約為5:1:2:3,運(yùn)煤的費(fèi)用與運(yùn)煤的路程、所運(yùn)煤的重量都成正比.現(xiàn)要從P、Q、R、S中選出一處設(shè)立一個(gè)運(yùn)煤中轉(zhuǎn)站,使四個(gè)采煤點(diǎn)的煤運(yùn)到中轉(zhuǎn)站的費(fèi)用最少,則地點(diǎn)應(yīng)選在( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•房山區(qū)二模)如圖,A,B,C,D是⊙O上的四個(gè)點(diǎn),過(guò)點(diǎn)B的切線與DC的延長(zhǎng)線交于點(diǎn)E.若∠BCD=110°,則∠DBE=(  )

查看答案和解析>>

同步練習(xí)冊(cè)答案