某商場銷售某種商品的經(jīng)驗表明,該商品每日的銷售量y(單位:千克)與銷售價格x(單位:元/千克)滿足關系式y=+10(x-6)2,其中3<x<6,a為常數(shù).已知銷售價格為5元/千克時,每日可售出該商品11千克.
(1)求a的值;
(2)若該商品的成本為3元/千克,試確定銷售價格x的值,使商場每日銷售該商品所獲得的利潤最大.
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù).
(1)求在上的最大值;
(2)若直線為曲線的切線,求實數(shù)的值;
(3)當時,設,且,若不等式恒成立,求實數(shù)的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù)f(x)=ln(x+1)-x2-x.
(1)若關于x的方程f(x)=-x+b在區(qū)間[0,2]上恰有兩個不同的實數(shù)根,求實數(shù)b的取值范圍;
(2)證明:對任意的正整數(shù)n,不等式2+++…+ >ln(n+1)都成立.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù)f(x)=-x3+x2,g(x)=aln x,a∈R.
(1)若對任意x∈[1,e],都有g(x)≥-x2+(a+2)x恒成立,求a的取值范圍;
(2)設F(x)=若P是曲線y=F(x)上異于原點O的任意一點,在曲線y=F(x)上總存在另一點Q,使得△POQ中的∠POQ為鈍角,且PQ的中點在y軸上,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
設f(x)=a(x-5)2+6ln x,其中a∈R,曲線y=f(x)在點(1,f(1))處的切線與y軸相交于點(0,6).
(1)確定a的值;
(2)求函數(shù)f(x)的單調(diào)區(qū)間與極值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù)的導函數(shù)為,的圖象在點,處的切線方程為,且,直線是函數(shù)的圖象的一條切線.
(1)求函數(shù)的解析式及的值;
(2)若對于任意,恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù)f(x)=ex-ln(x+m).
(1)設x=0是f(x)的極值點,求m,并討論f(x)的單調(diào)性;
(2)當m≤2時,證明f(x)>0.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù)f(x)=aln x-ax-3(a∈R).
(1)若a=-1,求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若函數(shù)y=f(x)的圖象在點(2,f(2))處的切線的傾斜角為45°,對于任意的t∈[1,2],函數(shù)g(x)=x3+x2 (f′(x)是f(x)的導函數(shù))在區(qū)間(t,3)上總不是單調(diào)函數(shù),求m的取值范圍;
(3)求證:×…×< (n≥2,n∈N*)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知為函數(shù)圖象上一點,為坐標原點,記直線的斜率.
(Ⅰ)若函數(shù)在區(qū)間上存在極值,求實數(shù)的取值范圍;
(Ⅱ)如果對任意的,,有,求實數(shù)的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com