已知橢圓C:
x2
a2
+
y2
b2
=1,(a>b>0)的兩個焦點分別為F1(-1,0),F(xiàn)2(1,0),且橢圓C經(jīng)過點P(
4
3
,
1
3
).求橢圓C的方程及離心率.
考點:橢圓的標(biāo)準(zhǔn)方程
專題:計算題,圓錐曲線的定義、性質(zhì)與方程
分析:利用橢圓的定義求出a,從而可得b,c,即可求出橢圓C的方程及離心率.
解答: 解:∵橢圓C:
x2
a2
+
y2
b2
=1,(a>b>0)的兩個焦點分別為F1(-1,0),F(xiàn)2(1,0),且橢圓C經(jīng)過點P(
4
3
,
1
3
),
∴2a=|PF1|+|PF2|=2
2

∴a=
2

又由已知c=1,∴b=1,
∴橢圓C的方程為
x2
2
+y2=1
,離心率為e=
c
a
=
2
2
點評:本題考查橢圓的標(biāo)準(zhǔn)方程與性質(zhì),正確運用橢圓的定義是關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
x
3
,x∈[0,
1
2
]
2x3
x+1
,x∈(
1
2
,1]
,函數(shù)g(x)=ax-
a
2
+3(a>0),若對任意x1∈[0,1],總存在x2∈[0,
1
2
],使得f(x1)=g(x2)成立,則實數(shù)a的取值范圍是(  )
A、[6,+∞)
B、[-4,+∞)
C、(-∞,6]
D、(-∞,-4]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓C過坐標(biāo)原點,且分別與x軸、y軸交于點A(6,0)、B(0,8).
(1)求圓C的方程,并指出圓心和圓的半徑;
(2)若點(x,y)∈圓C,求
y+1
x+7
的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1)tan405°-sin450°+cos750°+sin240°
(2)計算
lg5•lg8000+(lg2
3
)
2
lg600-
1
2
lg36-
1
2
lg0.01

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1)解不等式|x2-9|≤x+3.
(2)設(shè)x,y,z∈R+且x+2y+3z=1,求x2+y2+z2的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=x-
a
x
(a>0),g(x)=2lnx+bx,且直線y=2x-2與曲線y=g(x)相切.
(1)若對[1,+∞)內(nèi)的一切實數(shù)x,不等式f(x)≥g(x)恒成立,求實數(shù)a的取值范圍;
(2)當(dāng)a=1時,求最大的正整數(shù)k,使得任意k個實數(shù)x1,x2,…,xk∈[e,3](e=2.71828…是自然對數(shù)的底數(shù))都有f(x1)+f(x2)+…+f(xk-1)≤16g(xk)成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
=(2,1),向量
b
=(-1,k).
(1)若
a
b
,求k的值;
(2)若
a
b
,求
a
b
的值;
(3)若
a
b
的夾角為135°,求k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)橢圓E:
x2
a2
+
y2
1-a2
=1的焦點在x軸上,若橢圓E的焦距為1,求橢圓E的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=sin(ωx+φ),其中ω>0,|φ|<
π
2

(1)若cos
π
4
cosφ-sin
4
sinφ=0,求φ的值;
(2)在(1)的條件下,若函數(shù)f(x)的圖象與x軸的相鄰兩個交點之間的距離等于
π
3
,求函數(shù)f(x)的解析式;
(3)在(2)的條件下,若方程2f(x)-1=0在區(qū)間[a,b]上有三個實數(shù)根,求b-a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案