已知函數(shù)f(x)=sin(ωx+φ),其中ω>0,|φ|<
π
2

(1)若cos
π
4
cosφ-sin
4
sinφ=0,求φ的值;
(2)在(1)的條件下,若函數(shù)f(x)的圖象與x軸的相鄰兩個交點之間的距離等于
π
3
,求函數(shù)f(x)的解析式;
(3)在(2)的條件下,若方程2f(x)-1=0在區(qū)間[a,b]上有三個實數(shù)根,求b-a的取值范圍.
考點:函數(shù)y=Asin(ωx+φ)的圖象變換,三角函數(shù)中的恒等變換應(yīng)用
專題:三角函數(shù)的圖像與性質(zhì)
分析:(1)由cos
π
4
cosφ-sin
4
sinφ=cos(
π
4
+φ)=0,結(jié)合|φ|<
π
2
,求得φ的值.
(2)由函數(shù)的周期為
ω
=2×
π
3
,求得ω 的值,可得f(x)的解析式.
(3)由題意可得 sin(3x+
π
4
)=
1
2
在區(qū)間[a,b]上有三個實數(shù)根,可得b-a的最小值為一個周期,b-a的最大值趨于2個周期,從而求得b-a的取值范圍.
解答: 解:(1)函數(shù)函數(shù)f(x)=sin(ωx+φ),若cos
π
4
cosφ-sin
4
sinφ=cos(
π
4
+φ)=0,
結(jié)合|φ|<
π
2
,可得 φ=
π
4

(2)由于函數(shù)f(x)的圖象與x軸的相鄰兩個交點之間的距離等于
π
3
,
可得函數(shù)的周期為
ω
=2×
π
3
,求得ω=3,故f(x)=sin(3x+
π
4
).
(3)在(2)的條件下,若方程2f(x)-1=0在區(qū)間[a,b]上有三個實數(shù)根,
即 sin(3x+
π
4
)=
1
2
在區(qū)間[a,b]上有三個實數(shù)根,
故b-a的最小值為一個周期
3
,b-a的最大值趨于2個周期
3
,
故b-a∈[
3
,
3
).
點評:本題主要考查函數(shù)y=Asin(ωx+φ)的圖象性質(zhì),方程根的存在性及個數(shù)判斷,屬于基礎(chǔ)題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1,(a>b>0)的兩個焦點分別為F1(-1,0),F(xiàn)2(1,0),且橢圓C經(jīng)過點P(
4
3
,
1
3
).求橢圓C的方程及離心率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某企業(yè)擬建造如圖所示的容器(不計厚度,長度單位:米),其中容器的中間為圓柱形,左右兩端均為半球形,按照設(shè)計要求容器的體積為
64π
3
立方米.假設(shè)該容器的建造費用僅與其表面積有關(guān).已知圓柱形部分每平方米建造費用為3千元,半球形部分每平方米建造費用為4千元.設(shè)該容器的總建造費用為y千元.
(Ⅰ)將y表示成r的函數(shù)f(r),并求該函數(shù)的定義域;
(Ⅱ)討論函數(shù)f(r)的單調(diào)性,并確定r和l為何值時,該容器的建造費用最小,并求出最小建造費用.
(參考公式:球的表面積公式S=4πr2,球的體積公式V=
4
3
πr3,圓柱體的側(cè)面積公式S=2πrl,圓柱體的體積公式V=πr2l)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在橢圓中,稱過焦點且垂直于長軸的直線被橢圓所截得的弦為橢圓的“通徑”.已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的左、右焦點分別為F1、F2,其離心率為
1
2
,通徑長為3.
(1)求橢圓C的方程;
(2)如圖所示,過點F1的直線與橢圓交于A、B兩點,I1、I2分別為△F1BF2、△F1AF2的內(nèi)心,延長BF2與橢圓交于點M,求四邊形F1I2F2I1的面積與△AF2B的面積的比值;
(3)在x軸上是否存在定點P,使得
PM
PB
為定值?若存在,求出點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知點G是△ABC的重心,O是空間任一點.若
OB
+
OC
OG
+
AG
,則λ的值為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知雙曲線C:x2-
y2
2
=1的左、右兩個頂點分別為A、B.曲線M是以A、B兩點為短軸端點,離心率為
2
2
的橢圓.設(shè)點P在第一象限且在曲線C上,直線AP與橢圓M相交于另一點T.
(Ⅰ)設(shè)點P、T的橫坐標分別為x1、x2,證明:x1x2=1;
(Ⅱ)設(shè)△TAB與△POB(其中O為坐標原點)的面積分別為S1與S2,且
PA
PB
≤9,求S1•S2的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知直線l1:x=my與拋物線C:y2=4x交于O(坐標原點),A兩點,直線l2:x=my+m與拋物線C交于B,D兩點.
(Ⅰ)若|BD|=2|OA|,求實數(shù)m的值;
(Ⅱ)過A,B,D分別作y軸的垂線,垂足分別為A1,B1,D1.記S1,S2分別為三角形OAA1和四邊形BB1D1D的面積,求
S1
S2
的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=4lnx-
1
2
x2
(Ⅰ)求函數(shù)f(x)在點(1,f(1))處的切線方程;
(Ⅱ)求函數(shù)f(x)的單調(diào)區(qū)間和極值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知
AB
=(3,4),
AD
=(-1,3),點A(-2,1),點P(3,y)與
BD
所成的比為λ,則y=
 
,λ=
 

查看答案和解析>>

同步練習冊答案