19.已知函數(shù)f(x)=sin(ωx-$\frac{π}{6}$)(ω>0)在區(qū)間[-$\frac{π}{2}$,$\frac{4π}{3}$]上單調(diào)遞增,則實(shí)數(shù)ω的最大值為( 。
A.2B.$\frac{3}{2}$C.1D.$\frac{1}{2}$

分析 由條件利用正弦函數(shù)的增區(qū)間可得ω•$\frac{4π}{3}$-$\frac{π}{6}$≤$\frac{π}{2}$,且ω•(-$\frac{π}{2}$)-$\frac{π}{6}$≥-$\frac{π}{2}$,求得ω的范圍,可得實(shí)數(shù)ω的最大值.

解答 解:函數(shù)f(x)=sin(ωx-$\frac{π}{6}$)(ω>0)在區(qū)間[-$\frac{π}{2}$,$\frac{4π}{3}$]上單調(diào)遞增,
則ω•$\frac{4π}{3}$-$\frac{π}{6}$≤$\frac{π}{2}$,且ω•(-$\frac{π}{2}$)-$\frac{π}{6}$≥-$\frac{π}{2}$,求得ω≤$\frac{1}{2}$,
則實(shí)數(shù)ω的最大值為$\frac{1}{2}$,
故選:D.

點(diǎn)評 本題主要考查正弦函數(shù)的增區(qū)間,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.在平面直角坐標(biāo)系中,雙曲線C過點(diǎn)P(1,1),且其兩條漸近線的方程分別為2x+y=0和2x-y=0,則雙曲線C的標(biāo)準(zhǔn)方程為(  )
A.$\frac{x^2}{3}-\frac{{4{y^2}}}{3}=1$B.$\frac{{4{x^2}}}{3}-\frac{y^2}{3}=1$
C.$\frac{{4{x^2}}}{3}-\frac{y^2}{3}=1$或$\frac{x^2}{3}-\frac{{4{y^2}}}{3}=1$D.$\frac{{4{y^2}}}{3}-\frac{x^2}{3}=1$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知△ABC中,A=45°,B=60°,$b=\sqrt{3}$,那么a=$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.分別寫出下列函數(shù):y=log2x,x∈[$\frac{1}{2}$,4],y=cosx,x∈[-$\frac{π}{3}$,$\frac{π}{2}$]的最小值和最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知過雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的右焦點(diǎn)且垂直于x軸的直線l與雙曲線的漸近線圍成的三角形面積為$\frac{4\sqrt{3}}{3}$,雙曲線的離心率為$\frac{2}{3}$$\sqrt{3}$,則雙曲線的標(biāo)準(zhǔn)方程是( 。
A.$\frac{{x}^{2}}{3}$-y2=1B.$\frac{{y}^{2}}{3}$-x2=1C.x2-$\frac{{y}^{2}}{3}$=1D.y2-$\frac{{x}^{2}}{3}$=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.F是雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的左焦點(diǎn),過點(diǎn)F作雙曲線的一條漸近線的垂線,垂足為A,交另一條漸近線于點(diǎn)B.若3$\overrightarrow{FA}$=$\overrightarrow{FB}$,則此雙曲線的離心率為( 。
A.2B.3C.$\sqrt{2}$D.$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知數(shù)列{an}滿足a1=1,an+1•an=2n
(1)求an
(2)求{an}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.如圖,在平面直角坐標(biāo)系xOy中,一單位圓圓心的初始位置在(0,1),此時(shí)圓上點(diǎn)P的位置在(0,0),圓在x軸上沿正向滾動(dòng),當(dāng)圓滾動(dòng)到圓心位于(a,1)時(shí),則$\overrightarrow{OP}$的坐標(biāo)為(a-sina,1-cosa).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.α=-1,則α的終邊所在的象限是( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

同步練習(xí)冊答案