15.已知集合$M=\left\{{x\left|{\frac{x-5}{x+1}≤0}\right.}\right\}$,N={-3,-1,1,3,5},則M∩N=( 。
A.{-3,-1,1,3,5}B.{-1,1,3,5}C.{1,3,5}D.{-3,-1,1,3,}

分析 解不等式求出集合M,根據(jù)交集的定義寫出M∩N.

解答 解:集合$M=\left\{{x\left|{\frac{x-5}{x+1}≤0}\right.}\right\}$={x|-1<x≤5},
N={-3,-1,1,3,5},
則M∩N={1,3,5}.
故選:C.

點(diǎn)評(píng) 本題考查了解不等式與交集的運(yùn)算問(wèn)題,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.已知t>0,關(guān)于x的方程$\sqrt{2}-|x|=\sqrt{t-{x^2}}$,則這個(gè)方程的實(shí)數(shù)的個(gè)數(shù)是( 。
A.0或2B.0或2或3或4C.0或2或4D.0或1或2或3或4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.如圖,船甲以每小時(shí)30公里的速度向正東航行,船甲在A處看到另一船乙在北偏東60°的方向上的B處,且$AB=30\sqrt{3}$公里,正以每小時(shí)$5\sqrt{3}$公里的速度向南偏東60°的方向航行,行駛2小時(shí)后,甲、乙兩船分別到達(dá)C、D處,則CD等于$10\sqrt{3}$公里.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.某幾何體的三視圖如圖所示,則其體積為( 。
A.$\frac{{\sqrt{3}π}}{12}$B.$\frac{π}{6}$C.$\frac{{\sqrt{3}π}}{6}$D.$\frac{{\sqrt{3}π}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.某企業(yè)的4名職工參加職業(yè)技能考核,每名職工均可從4個(gè)備選考核項(xiàng)目中任意抽取一個(gè)參加考核,則恰有一個(gè)項(xiàng)目未被抽中的概率是$\frac{9}{16}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.已知0<a1<a2<a3,則使得${({1-{a_i}x})^2}<1({i=1,2,3})$都成立的x的取值范圍是(  )
A.$({0,\frac{1}{a_3}})$B.$({0,\frac{2}{a_3}})$C.$({0,\frac{1}{a_1}})$D.$({0,\frac{2}{a_1}})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.為了調(diào)查每天人們使用手機(jī)的時(shí)間,我校某課外興趣小組在天府廣場(chǎng)隨機(jī)采訪男性、女性用戶各50 名,其中每天玩手機(jī)超過(guò)6小時(shí)的用戶列為“手機(jī)控”,否則稱其為“非手機(jī)控”,調(diào)查結(jié)果如下:
手機(jī)控非手機(jī)控合計(jì)
男性262450
女性302050
合計(jì)5644100
(1)根據(jù)以上數(shù)據(jù),能否有60%的把握認(rèn)為“手機(jī)控”與“性別”有關(guān)?
(2)現(xiàn)從調(diào)查的女性用戶中按分層抽樣的方法選出5人,求所抽取5人中“手機(jī)控”和“非手機(jī)控”的人數(shù);
(3)從(2)中抽取的5人中再隨機(jī)抽取3人,記這3人中“手機(jī)控”的人數(shù)為X,試求X的分布列與數(shù)學(xué)期望.
參考公式:${K^2}=\frac{{n{{(ad-bc)}^2}}}{{({a+b})({c+d})({a+c})({b+d})}},其中n=a+b+c+d$.
參考數(shù)據(jù):
P(K2≥k00.500.400.250.050.0250.010
k00.456[0.7081.3213.8405.0246.635

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.在二項(xiàng)式${({\root{3}{x}-\frac{2}{x}})^n}$的展開(kāi)式中,所有項(xiàng)的二項(xiàng)式系數(shù)之和為256,則常數(shù)項(xiàng)為112.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.在△ABC中,三邊a,b,c的對(duì)角分別為A,B,C,若a2+b2=2018c2,則$\frac{2sinAsinBcosC}{{1-{{cos}^2}C}}$=2017.

查看答案和解析>>

同步練習(xí)冊(cè)答案