已知m∈R,復(fù)數(shù)z=(m2-5m+6)+(m2-3m)i.
(1)實(shí)數(shù)m取什么值時(shí),復(fù)數(shù)z為純虛數(shù)?
(2)實(shí)數(shù)m取什么值時(shí),復(fù)數(shù)z對(duì)應(yīng)的點(diǎn)在直線y=
1
2
x上?
考點(diǎn):復(fù)數(shù)的代數(shù)表示法及其幾何意義
專(zhuān)題:數(shù)系的擴(kuò)充和復(fù)數(shù)
分析:(1)由純虛數(shù)的定義可得
m2-5m+6=0
m2-3m≠0
,解得m即可.
(2)由題意可得m2-5m+6=2(m2-3m),解得即可.
解答: 解:(1)由純虛數(shù)的定義可得
m2-5m+6=0
m2-3m≠0
,解得m=2.
(2)由題意可得m2-5m+6=2(m2-3m),解得m=3或m=-2.
點(diǎn)評(píng):本題考查了純虛數(shù)的定義和幾何意義,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列選項(xiàng)正確的是(  )
A、若ac2>bc2,則a>b
B、若
a
c
b
c
,則a>b
C、若a2>b2,則a>b
D、若|a|>|b|,則a>b

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

甲、乙、丙3人分配到7個(gè)實(shí)驗(yàn)室準(zhǔn)備實(shí)驗(yàn),若每個(gè)實(shí)驗(yàn)室最多分配2人,則不同分配方案共有( 。
A、336B、306
C、258D、296

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)x1,x2是方程x2+3x-3=0的兩個(gè)實(shí)數(shù)根,則
x2
x1
+
x1
x2
的值為( 。
A、5B、-5C、1D、-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=x2-(a+2)x+alnx,其中常數(shù)a∈R.
(1)當(dāng)a=4時(shí),求函數(shù)f(x)的極值點(diǎn);
(2)令F(x)=f(x)+(a+2)x,若函數(shù)F(x)在區(qū)間[2,+∞)上單調(diào)遞增,求a的取值范圍;
(3)設(shè)定義在D上的函數(shù)y=h(x)在點(diǎn)P(x0,h(x0))處的切線方程為l:y=g(x),當(dāng)x≠x0時(shí),若
h(x)-g(x)
x-x0
>0在D內(nèi)恒成立,則稱(chēng)P為函數(shù)y=h(x)的“特殊點(diǎn)”,當(dāng)a=4時(shí),試問(wèn)y=f(x)是否存在“類(lèi)對(duì)稱(chēng)點(diǎn)”,若存在,請(qǐng)至少求出一個(gè)“特殊點(diǎn)”的橫坐標(biāo),若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

實(shí)數(shù)m取什么值時(shí),復(fù)數(shù)z=(m2-3m-4)+(m+1)i是:
(1)實(shí)數(shù)?
(2)虛數(shù)?
(3)純虛數(shù)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)橢圓D:
x2
a2
+
y2
b2
=1(a>b>0)的左、右焦點(diǎn)分別為F1、F2,上頂點(diǎn)為A,在c軸負(fù)半軸上有一點(diǎn)B,滿(mǎn)足
BF1
=
F1F2
,且AB⊥AF2
(Ⅰ)求橢圓D的離心率;
(Ⅱ)若過(guò)A、B、F2三點(diǎn)的圓C恰好與直線l:x-
3
y-3=0相切,求圓C方程及橢圓D的方程;
(Ⅲ)若過(guò)點(diǎn)T(3,0)的直線與橢圓D相交于兩點(diǎn)M、N,設(shè)P為橢圓上一點(diǎn),且滿(mǎn)足
OM
+
ON
=t
OP
(O為坐標(biāo)原點(diǎn)),求實(shí)數(shù)t取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

橢圓E經(jīng)過(guò)點(diǎn)M(2,3),對(duì)稱(chēng)軸為坐標(biāo)軸,左右焦點(diǎn)F1,F(xiàn)2,離心率e=
1
2

(1)求橢圓E的方程;
(2)直線l過(guò)橢圓右焦點(diǎn)且斜率為1與橢圓交于AB兩點(diǎn),求線段AB的長(zhǎng)度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知{an}為等比數(shù)列,且a2=4,a11=8,則log2a1a2…a12=
 

查看答案和解析>>

同步練習(xí)冊(cè)答案