1.像“3,4,5”這樣能夠成直角三角形的數(shù)稱為勾股數(shù),又稱為( 。
A.畢達(dá)哥拉斯數(shù)B.楊輝數(shù)C.拉格朗日恒等數(shù)D.三角數(shù)

分析 勾股定理又稱為畢達(dá)哥拉斯定理,即可得出.

解答 解:勾股定理又稱為畢達(dá)哥拉斯定理,
因此勾股數(shù),又稱為畢達(dá)哥拉斯數(shù),
故選:A.

點(diǎn)評 本題考查了勾股定理、畢達(dá)哥拉斯定理,考查了理解能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.設(shè)變量x,y滿足約束條件$\left\{\begin{array}{l}{2x-y-2≤0}\\{x-2y+2≥0}\\{x+y-1≥0}\end{array}\right.$,則z=x-4y的最小值為-6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.汽車以10米/秒的速度行駛,在某處需要減速停車,設(shè)汽車以加速度-2米/秒2剎車,若把剎車時(shí)間5等分,則從開始剎車到停車,汽車剎車距離的過剩近似值為30米.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知數(shù)列{an}的前n項(xiàng)和為Sn,且滿足an=3Sn-2(n∈N*).
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)求數(shù)列{nan}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.函數(shù)$f(x)=|{\begin{array}{l}{cos(π-x)}&{sinx}\\{sin(π+x)}&{cosx}\end{array}}|$的最小正周期t=π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.若對任意的x>1,函數(shù)x+xln x≥k(3x-e)(其中e是白然對數(shù)的底數(shù),e=2.71828…),則實(shí)數(shù)k的最大值為( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.已知橢圓$\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{9}$=1的兩個(gè)焦點(diǎn)分別為F1,F(xiàn)2,點(diǎn)P是橢圓上一點(diǎn),則△PF1F2的周長為18.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1\;(a>b>0)$的兩個(gè)焦點(diǎn)分別為F1,F(xiàn)2,若橢圓上存在點(diǎn)P使得∠F1PF2是鈍角,則橢圓離心率的取值范圍是( 。
A.$(0,\frac{{\sqrt{2}}}{2})$B.$(\frac{{\sqrt{2}}}{2},1)$C.$(0,\frac{1}{2})$D.$(\frac{1}{2},1)$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.化簡$\overrightarrow{AB}$+$\overrightarrow{BC}$-$\overrightarrow{AD}$等于( 。
A.$\overrightarrow{CD}$B.$\overrightarrow{DC}$C.$\overrightarrow{AD}$D.$\overrightarrow{CB}$

查看答案和解析>>

同步練習(xí)冊答案