2.函數(shù)f(x)=Asin(ωx+φ)的部分圖象如圖所示,若f(4)=-f(6)=-1,且$f(\frac{1}{2})=0$,則f(2017)=
A.$\frac{1}{2}$B.$\frac{\sqrt{2}}{2}$C.1D.$\frac{\sqrt{3}}{2}$

分析 根據(jù)圖象經(jīng)過(guò)的點(diǎn)以及自變量4,6的函數(shù)值關(guān)系分別求出ω,φ,A,然后求值.

解答 解:因?yàn)閒(x)=Asin(ωx+φ)的部分圖象,f(4)=-f(6)=-1,得到周期為T=2(6-4)=4,所以$ω=\frac{2π}{4}=\frac{π}{2}$,且$f(\frac{1}{2})=0$,所以Asin($\frac{π}{4}$+φ)=0,得到φ=$-\frac{π}{4}$,
又f(4)=-1,所以Asin(2$π-\frac{π}{4}$)=-1,解得A=$\sqrt{2}$,所以f(x)=$\sqrt{2}$sin($\frac{π}{2}x-\frac{π}{4}$)
所以f(2017)=f(504×4+1)=f(1)=$\sqrt{2}$sin($\frac{π}{2}-\frac{π}{4}$)=$\sqrt{2}×\frac{\sqrt{2}}{2}$=1;
故選C.

點(diǎn)評(píng) 本題考查由y=Asin(ωx+φ)的部分圖象確定解析式,考查數(shù)形結(jié)合思想,屬中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.設(shè)二次函數(shù)f(x)=x2+ax+b,若對(duì)任意的實(shí)數(shù)a,都存在實(shí)數(shù)$x∈[{\frac{1}{2},2}]$,使得不等式|f(x)|≥x成立,則實(shí)數(shù)b的取值范圍是( 。
A.$({-∞,-\frac{1}{3}}]∪[{2,+∞}]$B.$({-∞,-\frac{1}{3}}]∪[{\frac{1}{4},+∞})$C.$({-∞,\frac{1}{4}}]∪[{\frac{9}{4},+∞})$D.$({-∞,-\frac{1}{3}}]∪[{\frac{9}{4},+∞})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.若對(duì)?x∈[0,+∞),y∈[0,+∞),不等式ex+y-2+ex-y-2+2-4ax≥0恒成立,則實(shí)數(shù)a取值范圍是(  )
A.$({-∞,\frac{1}{4}}]$B.$[{\frac{1}{4},+∞})$C.$[{\frac{1}{2},+∞})$D.$({-∞,\frac{1}{2}}]$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.5支籃球隊(duì)進(jìn)行單循環(huán)比賽(任兩支球隊(duì)恰進(jìn)行一場(chǎng)比賽),任兩支球隊(duì)之間勝率都是$\frac{1}{2}$.單循環(huán)比賽結(jié)束,以獲勝的場(chǎng)次數(shù)作為該隊(duì)的成績(jī),成績(jī)按從大到小排名次順序,成績(jī)相同則名次相同.有下列四個(gè)命題:p1:恰有四支球隊(duì)并列第一名為不可能事件;p2:有可能出現(xiàn)恰有兩支球隊(duì)并列第一名;p3:每支球隊(duì)都既有勝又有敗的概率為$\frac{17}{32}$;p4:五支球隊(duì)成績(jī)并列第一名的概率為$\frac{3}{32}$.其中真命題是( 。
A.p1,p2,p3B.p1,p2,p4C.p1,p3,p4D.p2,p3,p4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.如圖,三角形ABC中,AB=1,$BC=\sqrt{3}$,以C為直角頂點(diǎn)向外作等腰直角三角形ACD,當(dāng)∠ABC變化時(shí),線段BD的長(zhǎng)度最大值為( 。
A.$\sqrt{6}-1$B.$\sqrt{6}$C.$\sqrt{6}+1$D.$2\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.已知拋物線C:x2=4y的焦點(diǎn)為F,直線l:y=kx+a(a>0)與拋物線C交于A,B兩點(diǎn).
(Ⅰ)若直線l過(guò)焦點(diǎn)F,且與圓x2+(y-1)2=1交于D,E(其中A,D在y軸同側(cè)),求證:|AD|•|BE|是定值;
(Ⅱ)設(shè)拋物線C在A和B點(diǎn)的切線交于點(diǎn)P,試問(wèn):y軸上是否存在點(diǎn)Q,使得APBQ為菱形?若存在,請(qǐng)說(shuō)明理由并求此時(shí)直線l的斜率和點(diǎn)Q的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.如圖,由函數(shù)f(x)=x2-x的圖象與x軸、直線x=2圍成的陰影部分的面積為1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.同時(shí)拋擲兩枚質(zhì)地均勻的骰子一次,在兩枚骰子點(diǎn)數(shù)不同的條件下,兩枚骰子至少有一枚出現(xiàn)6點(diǎn)的概率為$\frac{1}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.$\int_0^5{(2x-4)dx}$=( 。
A.5B.4C.3D.2

查看答案和解析>>

同步練習(xí)冊(cè)答案