3.如圖,在四棱錐P-ABCD中,PA⊥平面ABCD,底面ABCD是菱形,點O是對角線AC與BD的交點,AB=2,∠BAD=60°,M是PD的中點.
(Ⅰ)求證:OM∥平面PAB;
(Ⅱ)平面PBD⊥平面PAC;
(Ⅲ)當三棱錐C-PBD的體積等于$\frac{{\sqrt{3}}}{2}$時,求PA的長.

分析 (I)由中位線定理可知OM∥PB,故而OM∥平面PAB;
(II)由菱形的性質(zhì)得BD⊥AC,由PA⊥平面ABCD得BD⊥PA,故BD⊥平面PAC,于是平面PBD⊥平面PAC;
(III)根據(jù)VC-PBD=VP-BCD,計算出S△BCD代入體積公式得出棱錐的高PA.

解答 證明:(Ⅰ)在△PBD中,因為O,M分別是BD,PD的中點
所以OM∥PB.又OM?平面PAB,PB?平面PAB,
所以OM∥平面PAB.
(Ⅱ)因為底面ABCD是菱形,
所以BD⊥AC.
因為PA⊥平面ABCD,BD?平面ABCD,
所以PA⊥BD.又AC∩PA=A,
所以BD⊥平面PAC.
又BD?平面PBD,
所以平面PBD⊥平面PAC.
解:(Ⅲ)因為底面ABCD是菱形,且AB=2,∠BAD=60°,
所以S△BCD=$\frac{1}{2}×{2}^{2}×\frac{\sqrt{3}}{2}=\sqrt{3}$.
又VC-PBD=VP-BCD,三棱錐P-BCD的高為PA,
所以$\frac{1}{3}×\sqrt{3}×PA=\frac{{\sqrt{3}}}{2}$,
解得$PA=\frac{3}{2}$.

點評 本題考查了線面平行,面面垂直的判定,棱錐的體積計算,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

19.已知方程$\frac{{x}^{2}}{5-m}$+$\frac{{y}^{2}}{m-3}$=1表示的曲線是橢圓,且焦點在y軸上,那么m的取值范圍是(4,5).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

20.若0<x<1,那么當且僅當x=$\frac{1}{3}$時,函數(shù)y=log3x+logx3有最大值為-2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.若雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的離心率為e,一條漸近線的方程為y=$\sqrt{2e-1}$x,則e=( 。
A.$\sqrt{2}$B.$\sqrt{3}$C.2D.$\sqrt{6}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

18.如果將直線l:x+2y+c=0向左平移1個單位,再向下平移2個單位,所得直線l′與圓C:x2+y2+2x-4y=0相切,則實數(shù)c的值構成的集合為{-3,-13}.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

8.過定點P(1,2)的直線$\left\{\begin{array}{l}{x=1+\frac{\sqrt{3}}{2}t}\\{y=2+\frac{1}{2}t}\end{array}\right.$(t為參數(shù)),與圓x2+y2=4相交于A、B兩點.則|AB|=$\sqrt{3+4\sqrt{3}}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

15.在區(qū)間[-2,1]上隨機選一個數(shù)x,使得函數(shù)f(x)=log2(1-x2)有意義的概率為$\frac{2}{3}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.已知過定點P(2,0)的直線l與曲線$y=\sqrt{2-{x^2}}$相交于A,B兩點,O為坐標原點,當△AOB的面積最大時,直線l的傾斜角為( 。
A.150°B.135°C.120°D.30°

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

13.向量|$\overrightarrow{a}$|=1,|$\overrightarrow$|=$\sqrt{2}$,($\overrightarrow{a}$+$\overrightarrow$)(2$\overrightarrow{a}$-$\overrightarrow$)=-1,則向量$\overrightarrow{a}$與$\overrightarrow$的夾角為135°.

查看答案和解析>>

同步練習冊答案