【題目】某年級(jí)舉辦團(tuán)知識(shí)競(jìng)賽.、、、四個(gè)班報(bào)名人數(shù)如下:
班別 | ||||
人數(shù) | 45 | 60 | 30 | 15 |
年級(jí)在報(bào)名的同學(xué)中按分層抽樣的方式抽取10名同學(xué)參加競(jìng)賽,每位參加競(jìng)賽的同學(xué)從10個(gè)關(guān)于團(tuán)知識(shí)的題目中隨機(jī)抽取4個(gè)作答,全部答對(duì)的同學(xué)獲得一份獎(jiǎng)品.
(Ⅰ)求各班參加競(jìng)賽的人數(shù);
(Ⅱ)若班每位參加競(jìng)賽的同學(xué)對(duì)每個(gè)題目答對(duì)的概率均為,求班恰好有2位同學(xué)獲得獎(jiǎng)品的概率;
(Ⅲ)若這10個(gè)題目,小張同學(xué)只有2個(gè)答不對(duì),記小張答對(duì)的題目數(shù)為,求的分布列及數(shù)學(xué)期望.
【答案】(1)見(jiàn)解析(2)
【解析】試題分析:(Ⅰ)由分層抽樣的概念可得、、、四個(gè)班參加競(jìng)賽的人數(shù);(Ⅱ)先計(jì)算出班中每位參加競(jìng)賽的同學(xué)獲得獎(jiǎng)品的概率為,故班中恰好有2位同學(xué)獲得獎(jiǎng)品的概率為;(Ⅲ)由題意可得:的取值為2,3,4.服從超幾何分布,即可得出.
試題解析:(Ⅰ)、、、四個(gè)班參加競(jìng)賽的人數(shù)分別為:
,,,.
(Ⅱ)根據(jù)題意,班中每位參加競(jìng)賽的同學(xué)獲得獎(jiǎng)品的概率為,
所以班中恰好有2位同學(xué)獲得獎(jiǎng)品的概率為 .
(Ⅲ)由題意,取值為2,3,4,服從超幾何分布.
,,.
所以的分布列為:
2 | 3 | 4 | |
所以 .
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】用長(zhǎng)14.8 m的鋼條制作一個(gè)長(zhǎng)方體容器的框架,如果所制的底面的一邊比另一邊長(zhǎng)0.5 m,那么容器的最大容積為________m3.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC中,A、B、C的對(duì)邊分別為a、b、c,己知c﹣b=2bcosA.
(1)若a=2 ,b=3,求c;
(2)若C= ,求角B.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某研究性學(xué)習(xí)小組對(duì)春季晝夜溫差大小與某花卉種子發(fā)芽多少之間的關(guān)系進(jìn)行研究,他們分別記錄了3月1日至3月5日的每天晝夜溫差與實(shí)驗(yàn)室每天100顆種子浸泡后的發(fā)芽數(shù),得到如下資料:
K日 日期期 | 1日 | 2日 | 3日 | 4日 | 5日 |
溫差x(℃) | 10 | 11 | 13 | 12 | 8 |
發(fā)芽數(shù)y(顆) | 23 | 25 | 30 | 26 | 16 |
(1)求這5天發(fā)芽數(shù)的中位數(shù);
(2)求這5天的平均發(fā)芽率;
(3)從3月1日至3月5日中任選2天,記前面一天發(fā)芽的種子數(shù)為m,后面一天發(fā)芽的種子數(shù)為n,用(m,n)的形式列出所有基本事件,并求滿足“”的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列{an}的前n項(xiàng)和為Sn,且Sn=2n2+n,n∈N,數(shù)列{bn}滿足an=4log2bn+3,n∈N.
(1)求an,bn;
(2)求數(shù)列{anbn}的前n項(xiàng)和Tn.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)若曲線在點(diǎn)處的切線斜率為1,求函數(shù)的單調(diào)區(qū)間;
(2)若時(shí),恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若方程所表示的曲線為C,給出下列四個(gè)命題:
①若C為橢圓,則1<t<4且t≠;
②若C為雙曲線,則t>4或t<1;
③曲線C不可能是圓;
④若C表示橢圓,且長(zhǎng)軸在x軸上,則1<t<.
其中正確的命題是________(把所有正確命題的序號(hào)都填在橫線上).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系中,以為極點(diǎn), 軸的正半軸為極軸建立極坐標(biāo)系,曲線的參數(shù)方程為(為參數(shù), ),直線的極坐標(biāo)方程為.
(1)寫(xiě)出曲線的普通方程和直線的直角坐標(biāo)方程;
(2)為曲線上任意一點(diǎn), 為直線任意一點(diǎn),求的最小值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com