【題目】某中學為提升學生的英語學習能力,進行了主題分別為“聽”、“說”、“讀”、“寫”四場競賽.規(guī)定:每場競賽的前三名得分分別為,,,且,,),選手的最終得分為各場得分之和.最終甲、乙、丙三人包攬了每場競賽的前三名,在四場競賽中,已知甲最終分為分,乙最終得分為分,丙最終得分為分,且乙在“聽”這場競賽中獲得了第一名,則“聽”這場競賽的第三名是(

A. B. C. D. 甲和丙都有可能

【答案】C

【解析】

總分為,,只有種可能,

、、分別為、時,若乙在中得名,得分,即使他在剩下三場比賽中都得第名,得分,不符合要求,故、、分別為、、,乙的得分組成只能”、“”、“”、“分別得分、、、,即乙在這場競賽中獲得了第一名,其余均為第三名,由于甲得分為分,其得分組成只能是”、“”、“”、“分別得分、、分,在比賽中甲、乙、丙三人得分分別為、、分,故獲得第三名的只能是丙,故選

思路點睛】本題主要考查推理案例,屬于難題.推理案例的題型是高考命題的常見題型,由于條件較多,做題時往往感到不知從哪里找到突破點,解答這類問題,一定要仔細閱讀題文,逐條分析所給條件,并將其引伸,找到各條件間的融匯之處和矛盾之處,多次應用假設、排除、驗證,清理出有用“線索,找準突破點,從而使問題得以解決.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】下列命題中正確的是(
A.若ξ服從正態(tài)分布N(0,2),且P(ξ>2)=0.4,則P(0<ξ<2)=0.2
B.x=1是x2﹣x=0的必要不充分條件
C.直線ax+y+2=0與ax﹣y+4=0垂直的充要條件為a=±1
D.“若xy=0,則x=0或y=0”的逆否命題為“若x≠0或y≠0,則xy≠0”

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設a>0,b>0(
A.若lna+2a=lnb+3b,則a>b
B.2a+2a=2b+3b,則a<b
C.若lna﹣2a=lnb﹣3b,則a>b
D.2a﹣2a=2b﹣3b,則a<b

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設不等式|2x﹣1|<1的解集為M,a∈M,b∈M
(1)試比較ab+1與a+b的大小
(2)設max表示數(shù)集A的最大數(shù),h=max{ , , },求證h≥2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若圖所示,將若干個點擺成三角形圖案,每條邊(包括兩個端點)n(n>1,n∈N*)個點,相應的圖案中總的點數(shù)記為an , 則 + + +…+ =

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若某產(chǎn)品的直徑長與標準值的差的絕對值不超過1mm 時,則視為合格品,否則視為不合格品。在近期一次產(chǎn)品抽樣檢查中,從某廠生產(chǎn)的此種產(chǎn)品中,隨機抽取5000件進行檢測,結果發(fā)現(xiàn)有50件不合格品。計算這50件不合格品的直徑長與標準值的差(單位:mm), 將所得數(shù)據(jù)分組,得到如下頻率分布表:

分組

頻數(shù)

頻率

[-3, -2)

 

0.10

[-2, -1)

8

 

(1,2]

 

0.50

(2,3]

10

 

(3,4]

 

 

合計

50

1.00

)將上面表格中缺少的數(shù)據(jù)填在答題卡的相應位置;

)估計該廠生產(chǎn)的此種產(chǎn)品中,不合格品的直徑長與標準值的差落在區(qū)間(1,3]內(nèi)的概率;

)現(xiàn)對該廠這種產(chǎn)品的某個批次進行檢查,結果發(fā)現(xiàn)有20件不合格品。據(jù)此估算這批產(chǎn)品中的合格品的件數(shù)。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】將一顆骰子先后拋擲2次,觀察向上的點數(shù),求:

(1)兩數(shù)之和為5的概率;

(2)兩數(shù)中至少有一個奇數(shù)的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在△ABC中,a、b、c分別是角A、B、C的對邊,且 =﹣
(Ⅰ)求角B的大小;
(Ⅱ)若b= ,a+c=4,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù)f(x)在R上可導,其導函數(shù)為f′(x),且函數(shù)y=(1﹣x)f′(x)的圖象如圖所示,則下列結論中一定成立的是( 。

A.函數(shù)f(x)有極大值f(2)和極小值f(1)
B.函數(shù)f(x)有極大值f(﹣2)和極小值f(1)
C.函數(shù)f(x)有極大值f(2)和極小值f(﹣2)
D.函數(shù)f(x)有極大值f(﹣2)和極小值f(2)

查看答案和解析>>

同步練習冊答案