【題目】已知函數(shù) ,則f(f(﹣2))= , 若f(x)≥2,則x的取值范圍為 .
【答案】0;x≥3或x=0
【解析】解:由分段函數(shù)的表達式得f(﹣2)= =4﹣2=2, f(2)=0,故f(f(﹣2))=0,
若x≤﹣1,由f(x)≥2得( )x﹣2≥2得(
)x≥4,則2﹣x≥4,
得﹣x≥2,則x≤﹣2,此時x≤﹣2.
若x>﹣1,由f(x)≥2得(x﹣2)(|x|﹣1)≥2,
即x|x|﹣x﹣2|x|≥0,
若x≥0得x2﹣3x≥0,則x≥3或x≤0,此時x≥3或x=0,
若x<0,得﹣x2+x≥0,得x2﹣x≤0,得0≤x≤1,此時無解,
綜上x≥3或x=0,
所以答案是:0,x≥3或x=0
【考點精析】認真審題,首先需要了解函數(shù)的值(函數(shù)值的求法:①配方法(二次或四次);②“判別式法”;③反函數(shù)法;④換元法;⑤不等式法;⑥函數(shù)的單調性法).
科目:高中數(shù)學 來源: 題型:
【題目】已知圓M:,直線l:
,A為直線l上一點.
若
,過A作圓M的兩條切線,切點分別為P,Q,求
的大。
若圓M上存在兩點B,C,使得
,求點A橫坐標的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函f(x)=ax2﹣ex(a∈R). (Ⅰ)a=1時,試判斷f(x)的單調性并給予證明;
(Ⅱ)若f(x)有兩個極值點x1 , x2(x1<x2).
(i) 求實數(shù)a的取值范圍;
(ii)證明:﹣ . (注:e是自然對數(shù)的底數(shù))
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,曲線
過點
,其參數(shù)方程為
(
為參數(shù),
),以
為極點,
軸非負半軸為極軸,建立極坐標系,曲線
的極坐標方程為
.
(1)求曲線的普通方程和曲線
的直角坐標方程;
(2)求已知曲線和曲線
交于
兩點,且
,求實數(shù)
的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,設橢圓 +
=1(a>b>0)的左右焦點分別為F1 , F2 , 點D在橢圓上,DF1⊥F1F2 ,
=2
,△DF1F2的面積為
. (Ⅰ)求該橢圓的標準方程;
(Ⅱ)是否存在圓心在y軸上的圓,使圓在x軸的上方與橢圓有兩個交點,且圓在這兩個交點處的兩條切線互相垂直并分別過不同的焦點?若存在,求出圓的方程;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在直角坐標系中,曲線
的參數(shù)方程為
(
為參數(shù)),直線
的參數(shù)方程為
(
為參數(shù)),且直線
與曲線
交于
兩點,以直角坐標系的原點為極點,以
軸的正半軸為極軸建立極坐標系.
(1)求曲線的極坐標方程;
(2) 已知點的極坐標為
,求
的值
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com