【題目】已知函數(shù).
(1)討論的單調(diào)性;
(2)已知為的兩個(gè)零點(diǎn),證明:.
【答案】(1)見解析(2)見解析
【解析】分析:(1)首先確定函數(shù)的定義域,之后對(duì)函數(shù)求導(dǎo),對(duì)參數(shù)進(jìn)行討論,當(dāng)導(dǎo)數(shù)大于零時(shí)單調(diào)增,當(dāng)導(dǎo)數(shù)小于零時(shí)單調(diào)減;
(2)由函數(shù)有兩個(gè)零點(diǎn),根據(jù)第一問的結(jié)論,可以斷定,分別將兩個(gè)零點(diǎn)代入函數(shù)解析式,得到兩個(gè)方程,將兩式相減得到,即,之后將問題轉(zhuǎn)化,構(gòu)造新函數(shù),利用導(dǎo)數(shù)研究函數(shù)的性質(zhì),從而證得結(jié)果.
詳解:(1)函數(shù)的定義域?yàn)?/span>,
,
當(dāng)時(shí)恒成立,
∴在上單調(diào)遞增,
當(dāng)時(shí),
令得,令得,
∴在上單調(diào)遞增,上單調(diào)遞減.
(2)由為的兩個(gè)零點(diǎn)及(1)知,
∴,兩式相減得,即,
要證,只需證,
即證,即證 ,
不妨設(shè),令,只需證,
設(shè),則 ,
設(shè),則,∴在上單減,
∴,∴在上單增,
∴,即在時(shí)恒成立,原不等式得證.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知四面體P﹣ABC的外接球的球心O在AB上,且PO⊥平面ABC,2AC= AB,若四面體P﹣ABC的體積為 ,則該球的體積為( )
A.
B.2π
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】“開門大吉”是某電視臺(tái)推出的游戲節(jié)目.選手面對(duì)1~8號(hào)8扇大門,依次按響門上的門鈴,門鈴會(huì)播放一段音樂(將一首經(jīng)典流行歌曲以單音色旋律的方式演繹),選手需正確回答出這首歌的名字,方可獲得該扇門對(duì)應(yīng)的家庭夢(mèng)想基金.在一次場(chǎng)外調(diào)查中,發(fā)現(xiàn)參賽選手多數(shù)分為兩個(gè)年齡段:20~30;30~40(單位:歲),其猜對(duì)歌曲名稱與否的人數(shù)如圖所示.
(1)寫出2×2列聯(lián)表;判斷是否有90%的把握認(rèn)為猜對(duì)歌曲名稱與否和年齡有關(guān);說明你的理由;(下面的臨界值表供參考) (參考公式:K2= ,其中n=a+b+c+d)
P(K2≥k0) | 0.10 | 0.05 | 0.010 | 0.005 |
k0 | 2.706 | 3.841 | 6.635 | 7.879 |
(2)現(xiàn)計(jì)劃在這次場(chǎng)外調(diào)查中按年齡段選取6名選手,并抽取3名幸運(yùn)選手,求3名幸運(yùn)選手中在20~30歲之間的人數(shù)的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在亞丁灣海域執(zhí)行護(hù)航任務(wù)的中國(guó)海軍“徐州”艦,在A處收到某商船在航行中發(fā)出求救信號(hào)后,立即測(cè)出該商船在方位角方位角(是從某點(diǎn)的指北方向線起,依順時(shí)針方向到目標(biāo)方向線之間的水平夾角)為45°、距離A處為10 n mile的C處,并測(cè)得該船正沿方位角為105°的方向,以9 n mile/h的速度航行,“徐州”艦立即以21 n mile/h的速度航行前去營(yíng)救.
(1)“徐州”艦最少需要多少時(shí)間才能靠近商船?
(2)在營(yíng)救時(shí)間最少的前提下,“徐州”艦應(yīng)按照怎樣的航行方向前進(jìn)?(角度精確到0.1°,時(shí)間精確到1min,參考數(shù)據(jù):sin68.2°≈0.9286)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)在(﹣1,+∞)上單調(diào),且函數(shù)y=f(x﹣2)的圖象關(guān)于x=1對(duì)稱,若數(shù)列{an}是公差不為0的等差數(shù)列,且f(a50)=f(a51),則{an}的前100項(xiàng)的和為( )
A.﹣200
B.﹣100
C.0
D.﹣50
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,a,b,c分別是角A,B,C的對(duì)邊,b= sinB,且滿足tanA+tanC= . (Ⅰ)求角C和邊c的大;
(Ⅱ)求△ABC面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=xlnx+x(x﹣a)2(a∈R),若存在 ,使得f(x)>xf'(x)成立,則實(shí)數(shù)a的取值范圍是( )
A.
B.
C.
D.(3,+∞)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f (x)=a lnx++x (a≠0).
(1)若曲線y=f (x)在點(diǎn)(1,f (1))處的切線與直線x-2y=0垂直,求實(shí)數(shù)a的值;
(2)討論函數(shù)f (x)的單調(diào)性.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com