(理)已知橢圓C1的方程為+y2=1,雙曲線C2的左、右焦點(diǎn)分別是C1的左、右頂點(diǎn),而C2的左、右頂點(diǎn)分別是C1的左、右焦點(diǎn).

(1)求雙曲線C2的方程;

(2)若直線l∶y=kx+與雙曲線C2恒有兩個(gè)不同的交點(diǎn)A和B,且>2,其中O為原點(diǎn),求k的范圍.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2008•楊浦區(qū)二模)(理)在平面直角坐標(biāo)系xoy中,若在曲線C1的方程F(x,y)=0中,以(λx,λy)(λ為正實(shí)數(shù))代替(x,y)得到曲線C2的方程F(λx,λy)=0,則稱(chēng)曲線C1、C2關(guān)于原點(diǎn)“伸縮”,變換(x,y)→(λx,λy)稱(chēng)為“伸縮變換”,λ稱(chēng)為伸縮比.
(1)已知曲線C1的方程為
x2
9
-
y2
4
=1
,伸縮比λ=2,求C1關(guān)于原點(diǎn)“伸縮變換”后所得曲線C2的方程;
(2)射線l的方程y=
2
2
x(x≥0)
,如果橢圓C1
x2
16
+
y2
4
=1
經(jīng)“伸縮變換”后得到橢圓C2,若射線l與橢圓C1、C2分別交于兩點(diǎn)A、B,且|AB|=
2
,求橢圓C2的方程;
(3)對(duì)拋物線C1:y2=2p1x,作變換(x,y)→(λ1x,λ1y),得拋物線C2:y2=2p2x;對(duì)C2作變換(x,y)→(λ2x,λ2y)得拋物線C3:y2=2p3x,如此進(jìn)行下去,對(duì)拋物線Cn:y2=2pnx作變換(x,y)→(λnx,λny),得拋物線Cn+1:y2=2pn+1x,….若p1=1 , λn=(
1
2
)n
,求數(shù)列{pn}的通項(xiàng)公式pn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(05年重慶卷理)(12分)

已知橢圓C1的方程為,雙曲線C2的左、右焦點(diǎn)分別為C1的左、右頂點(diǎn),而C2的左、右頂點(diǎn)分別是C1的左、右焦點(diǎn).

   (Ⅰ)求雙曲線C2的方程;

(Ⅱ)若直線與橢圓C1及雙曲線C2都恒有兩個(gè)不同的交點(diǎn),且l與C2的兩個(gè)交點(diǎn)A和B滿(mǎn)足(其中O為原點(diǎn)),求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(08年上虞市質(zhì)檢一理)已知橢圓C1 (0<a<,0<b<2)與橢圓C2有相同的焦點(diǎn). 直線L:y=k(x+1)與兩個(gè)橢圓的四個(gè)交點(diǎn),自上而下順次記為A、B、C、D.

(I)求線段BC的長(zhǎng)(用k和a表示);

(II)是否存在這樣的直線L,使線段AB、BC、CD的長(zhǎng)按此順序構(gòu)成一個(gè)等差數(shù)列.請(qǐng)說(shuō)明詳細(xì)的理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年江蘇省南京市江寧高中高三(上)12月迎市統(tǒng)測(cè)數(shù)學(xué)試卷(解析版) 題型:解答題

(理)在平面直角坐標(biāo)系xoy中,若在曲線C1的方程F(x,y)=0中,以(λx,λy)(λ為正實(shí)數(shù))代替(x,y)得到曲線C2的方程F(λx,λy)=0,則稱(chēng)曲線C1、C2關(guān)于原點(diǎn)“伸縮”,變換(x,y)→(λx,λy)稱(chēng)為“伸縮變換”,λ稱(chēng)為伸縮比.
(1)已知曲線C1的方程為,伸縮比λ=2,求C1關(guān)于原點(diǎn)“伸縮變換”后所得曲線C2的方程;
(2)射線l的方程,如果橢圓C1經(jīng)“伸縮變換”后得到橢圓C2,若射線l與橢圓C1、C2分別交于兩點(diǎn)A、B,且,求橢圓C2的方程;
(3)對(duì)拋物線C1:y2=2p1x,作變換(x,y)→(λ1x,λ1y),得拋物線C2:y2=2p2x;對(duì)C2作變換(x,y)→(λ2x,λ2y)得拋物線C3:y2=2p3x,如此進(jìn)行下去,對(duì)拋物線Cn:y2=2pnx作變換(x,y)→(λnx,λny),得拋物線Cn+1:y2=2pn+1x,….若,求數(shù)列{pn}的通項(xiàng)公式pn

查看答案和解析>>

同步練習(xí)冊(cè)答案