已知橢圓(a>b>0)經(jīng)過點,其離心率為
(Ⅰ)求橢圓C的方程;
(Ⅱ)設直線與橢圓C相交于A、B兩點,以線段OA,OB為鄰邊作平行四邊形OAPB,其中頂點P在橢圓C上,O為坐標原點.求|OP|的取值范圍.
【答案】分析:(Ⅰ)先由已知可得,得出3a2=4b2①又點在橢圓C上,得到解之即得a,b.從而寫出橢圓C的方程;
(Ⅱ)先對k 分類討論:當k=0時,P(0,2m)在橢圓C上,解得,所以;當k≠0時,將直線的方程代入橢圓的方程,消去y得到關于x的一元二次方程,再結(jié)合根系數(shù)的關系利用弦長公式即可求得|OP|的取值范圍,從而解決問題.
解答:解:(Ⅰ)由已知可得,所以3a2=4b2①(1分)
又點在橢圓C上,
所以②(2分)
由①②解之,得a2=4,b2=3.
故橢圓C的方程為.(5分)
(Ⅱ)當k=0時,P(0,2m)在橢圓C上,解得,
所以.(6分)
當k≠0時,則由
消y化簡整理得:(3+4k2)x2+8kmx+4m2-12=0,
△=64k2m2-4(3+4k2)(4m2-12)=48(3+4k2-m2)>0③(8分)
設A,B,P點的坐標分別為(x1,y1)、(x2,y2)、(x,y),
.(9分)
由于點P在橢圓C上,所以.(10分)
從而,化簡得4m2=3+4k2,經(jīng)檢驗滿足③式.(11分)

=
=.(12分)
因為,得3<4k2+3≤4,有
.(13分)
綜上,所求|OP|的取值范圍是.(14分)
點評:本題主要考查了直線與圓錐曲線的綜合問題、橢圓的標準方程問題.當研究橢圓和直線的關系的問題時,?衫寐(lián)立方程,進而利用韋達定理來解決.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知橢圓=1(a>b>0)與雙曲線=1(m>0,n>0)有相同的焦點(-c,0)和(c,0),若c是a、m的等比中項,n2是2m2與c2的等差中項,則橢圓的離心率是(    )

A.                    B.               C.                 D.

查看答案和解析>>

科目:高中數(shù)學 來源:2014屆廣東省、陽東一中高二上聯(lián)考文數(shù)試卷(解析版) 題型:解答題

(本題滿分14分)

如圖,已知橢圓=1(ab>0),F1、F2分別為橢圓的左、右焦點,A為橢圓的上的頂點,直線AF2交橢圓于另 一點B.

(1)若∠F1AB=90°,求橢圓的離心率;

(2)若=2·,求橢圓的方程.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2012年全國普通高等學校招生統(tǒng)一考試文科數(shù)學(天津卷解析版) 題型:解答題

已知橢圓(a>b>0),點在橢圓上。

(I)求橢圓的離心率。

(II)設A為橢圓的右頂點,O為坐標原點,若Q在橢圓上且滿足|AQ|=|AO|,求直線OQ的斜率的值。

【考點定位】本小題主要考查橢圓的標準方程和幾何性質(zhì)、直線的方程、平面內(nèi)兩點間距離公式等基礎知識. 考查用代數(shù)方法研究圓錐曲線的性質(zhì),以及數(shù)形結(jié)合的數(shù)學思想方法.考查運算求解能力、綜合分析和解決問題的能力.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2010-2011學年湖北省天門市高三天5月模擬文科數(shù)學試題 題型:解答題

已知橢圓(a>b>0)的焦距為4,且與橢圓有相同的離心率,斜率為k的直線l經(jīng)過點M(0,1),與橢圓C交于不同兩點A、B.

   (1)求橢圓C的標準方程;

   (2)當橢圓C的右焦點F在以AB為直徑的圓內(nèi)時,求k的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2010年河北省邯鄲市高二上學期期末考試數(shù)學理卷 題型:解答題

(本小題滿分分)

(普通高中)已知橢圓(a>b>0)的離心率,焦距是函數(shù)的零點.

(1)求橢圓的方程;

(2)若直線與橢圓交于兩點,,求k的值.

 

查看答案和解析>>

同步練習冊答案