3.已知函數(shù)f(x),φ(x)滿足關(guān)系φ(x)=f(x)•f(x+α)(其中α是常數(shù)).
(1)如果α=1,f(x)=2x-1,求函數(shù)φ(x)的值域;
(2)如果α=$\frac{π}{2}$,f(x)=sinx,且對任意x∈R,存在x1,x2∈R,使得φ(x1)≤φ(x)≤φ(x2)恒成立,求|x1-x2|的最小值;
(3)如果f(x)=Asin(ωx+ϕ)(A>0,ω>0),求函數(shù)φ(x)的最小正周期(只需寫出結(jié)論).

分析 (1)因為α=1,f(x)=2x-1,可得φ(x)=(2x-1)(2x+1-1)=2•(2x2-3•2x+1,令t=2x(t>0),所以也就是求函數(shù)y=2t2-3t+1(t>0)的值域,利用二次函數(shù)的單調(diào)性即可得出.
(2)因為$α=\frac{π}{2}$,f(x)=sinx,可得$φ(x)=sinx•sin(x+\frac{π}{2})=\frac{1}{2}sin2x$,因為對任意x∈R,存在x1,x2∈R,使得φ(x1)≤φ(x)≤φ(x2)恒成立,所以φ(x1),φ(x2)應(yīng)該分別為函數(shù)φ(x)在R上的最小值和最大值,所以|x1-x2|的最小值就是函數(shù)φ(x)的半周期,即可得出.
(3)T=$\frac{π}{ω}$.

解答 解:(1)因為α=1,f(x)=2x-1,
所以φ(x)=(2x-1)(2x+1-1)=2•(2x2-3•2x+1,
令t=2x(t>0),所以也就是求函數(shù)y=2t2-3t+1(t>0)的值域,
所以φ(x)的值域為$[-\frac{1}{8},+∞)$.…(3分)
(2)因為$α=\frac{π}{2}$,f(x)=sinx,
所以$φ(x)=sinx•sin(x+\frac{π}{2})=\frac{1}{2}sin2x$,
因為對任意x∈R,存在x1,x2∈R,使得φ(x1)≤φ(x)≤φ(x2)恒成立,
所以φ(x1),φ(x2)應(yīng)該分別為函數(shù)φ(x)在R上的最小值和最大值,
所以|x1-x2|的最小值就是函數(shù)φ(x)的半周期,
也就是|x1-x2|的最小值為$\frac{π}{2}$.…(7分)
(3)T=$\frac{π}{ω}$.…(9分)

點評 本題考查了抽象函數(shù)的周期性單調(diào)性與值域、三角函數(shù)的圖象與性質(zhì),考查了推理能力與計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.正方體ABCD-A1B1C1D1中,AC1與平面BCC1B1所成角的余弦值為$\frac{\sqrt{6}}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.將函數(shù)f(x)=2sinxcosx的圖象向左平移$\frac{π}{12}$個單位,再向上平移1個單位,得到g(x)的圖象.若f(x1)g(x2)=2,則|2x1+x2|的最小值為( 。
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$\frac{π}{2}$D.$\frac{2π}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知$a={log_2}\sqrt{2}$,$b={log_{\sqrt{3}}}2$,c=log35,則( 。
A.c>b>aB.b>c>aC.a>b>cD.c>a>b

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知函數(shù)$f(x)=sinx-\frac{1}{2}$與g(x)=cos(2x+φ)$(0≤φ<\frac{π}{2})$,它們的圖象有一個橫坐標(biāo)為$\frac{π}{6}$的交點.
(Ⅰ)求φ的值;
(Ⅱ)將f(x)圖象上所有點的橫坐標(biāo)變?yōu)樵瓉淼?\frac{1}{ω}(ω>0)$倍,得到h(x)的圖象,若h(x)的最小正周期為π,求ω的值和h(x)的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.奇函數(shù)f(x)在(-∞,0)上單調(diào)遞減,且f(2)=0,則不等式f(x)>0的解集是( 。
A.(-∞,-2)∪(0,2)B.(-∞,0)∪(2,+∞)C.(-2,0)∪(0,2)D.(-2,0)∪(2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015-2016學(xué)年河北省保定市高一上學(xué)期期中考試數(shù)學(xué)試卷(解析版) 題型:選擇題

函數(shù)的定義域是( )

A.(﹣1,+∞) B.[﹣1,+∞)

C.(﹣1,1)∪(1,+∞) D.[﹣1,1)∪(1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.命題“ax2-2ax+3>0恒成立”是假命題,則實數(shù)a的取值范圍是( 。
A.0<a<3B.a<0或a≥3C.a<0或a>3D.a≤0或a≥3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.設(shè)命題$p:?x∈R,{x^2}-x+\frac{1}{4}≥0$,則¬p為( 。
A.$?x∈R,x_{\;}^2-x+\frac{1}{4}≥0$B.$?x∈R,x_{\;}^2-x+\frac{1}{4}<0$
C.$?x∈R,x_{\;}^2-x+\frac{1}{4}≤0$D.$?x∈R,{x^2}-x+\frac{1}{4}<0$

查看答案和解析>>

同步練習(xí)冊答案