已知函數(shù)y=
x2+ax-1+2a
的值域?yàn)閇0,+∞),則a的取值范圍是
{a|a≥4+2
3
,或a≤4-2
3
}
{a|a≥4+2
3
,或a≤4-2
3
}
分析:令t=g(x)=x2+ax-1+2a,由題意可得a2-4(2a-1)≥0,解此一元二次不等式,求得a的取值范圍.
解答:解:令t=g(x)=x2+ax-1+2a,要使函數(shù)y=
t
的值域?yàn)閇0,+∞),
則說(shuō)明[0,+∞)⊆{y|y=g(x)},即二次函數(shù)的判別式△≥0,
即a2-4(2a-1)≥0,即a2-8a+4≥0,解得a≥4+2
3
a≤4-2
3

所以a的取值范圍是{a|a≥4+2
3
,或a≤4-2
3
},
故答案為 {a|a≥4+2
3
,或a≤4-2
3
}.
點(diǎn)評(píng):本題主要考查函數(shù)的值域的應(yīng)用,二次函數(shù)的性質(zhì),體現(xiàn)了轉(zhuǎn)化的數(shù)學(xué)思想,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)y=x2-x-4的定義域?yàn)閇m,n],值域?yàn)?span id="dpf7trf" class="MathJye">[-
17
4
,-4],則m+n的取值范圍為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)y=-x2+ax-
a
4
+
1
2
在區(qū)間[0,1]上的最大值是2,求實(shí)數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)y=
-x2+7x-12
的定義域是A,函數(shù)y=
a
x2+x+1
(a>0)
在[2,4]上的值域?yàn)锽,全集為R,且B∪(?RA)=R,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)y=x2-ax在[1,3]上是關(guān)于x的單調(diào)增函數(shù),則實(shí)數(shù)a的取值范圍是
a≤2
a≤2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)y=x2+ax+3的定義域?yàn)閇-1,1],且當(dāng)x=-1時(shí),y有最小值;當(dāng)x=1時(shí),y有最大值,則實(shí)數(shù)a的取值范圍是( 。
A、0<a≤2B、a≥2C、a<0D、a∈R

查看答案和解析>>

同步練習(xí)冊(cè)答案