同時(shí)拋擲兩枚大小形狀都相同、質(zhì)地均勻的骰子,求:
(1)一共有多少種不同的結(jié)果;
(2)點(diǎn)數(shù)之和4的概率;
(3)至少有一個(gè)點(diǎn)數(shù)為5的概率.

(1)36(2)(3)

解析試題分析:(1)每一個(gè)一個(gè)正方體骰子的結(jié)果有6種,因此同時(shí)拋擲兩枚質(zhì)地均勻的正方體骰子的結(jié)果有36種.
(2)用列舉法求得在上面所有結(jié)果中其中點(diǎn)數(shù)之和是4的倍數(shù)的有9種,所以P(A)
(3)由于所有36種結(jié)果是等可能的,其中至少有一個(gè)點(diǎn)數(shù)為5的結(jié)果有(1,5)(2,5)(3,5)
(4,5)(5,5)(6,5)(5,1)(5,2)(5,3)(5,4)(5,6)共11個(gè),從而求得概率.古典概型問題,可以列舉出試驗(yàn)發(fā)生包含的事件和滿足條件的事件,列舉法,是解決古典概型問題的一種重要的解題方法.
試題解析:(1)擲一枚骰子的結(jié)果有6種  1分   我們把兩個(gè)骰子標(biāo)上記1,2以便區(qū)分,由于1號(hào)
骰子的每一個(gè)結(jié)果都可以與2號(hào)骰子的任意一個(gè)結(jié)果配對(duì),組成同時(shí)擲兩枚骰子的一個(gè)結(jié)果   3分
因此同時(shí)擲兩枚骰子的結(jié)果共有36種。  4分
(2)記事件A為“點(diǎn)數(shù)之和是4的倍數(shù)”,則A包含的基本事件為:(1,3)(2,2)(2,6)
(3,1)(3,5)(4,4)(5,3)(6,2)(6,6)共9個(gè)。    7分
所以P(A)    9分
(3)記事件B為“至少有一個(gè)點(diǎn)數(shù)為5”,則事件B包含的基本事件為:(1,5)(2,5)(3,5)
(4,5)(5,5)(6,5)(5,1)(5,2)(5,3)(5,4)(5,6)共11個(gè)。  12分
所以P(B)   14分
考點(diǎn):古典概型及其概率計(jì)算公式  

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

某牛奶廠要將一批牛奶用汽車從所在城市甲運(yùn)至城市乙,已知從城市甲到城市乙只有兩條公路,且運(yùn)費(fèi)由廠商承擔(dān).若廠商恰能在約定日期(×月×日)將牛奶送到,則城市乙的銷售商一次性支付給牛奶廠20萬(wàn)元;若在約定日期前送到,每提前一天銷售商將多支付給牛奶廠1萬(wàn)元;若在約定日期后送到,每遲到一天銷售商將少支付給牛奶廠1萬(wàn)元.為保證牛奶新鮮度,汽車只能在約定日期的前兩天出發(fā),且只能選擇其中的一條公路運(yùn)送牛奶,已知下表內(nèi)的信息:

統(tǒng)計(jì)信息
汽車行駛路線
在不堵車的情況下到達(dá)城市乙所需時(shí)間(天)
在堵車的情況下到達(dá)城市乙所需時(shí)間(天)
堵車的概率
運(yùn)費(fèi)(萬(wàn)元)
公路1
2
3

1.6
公路2
1
4

0.8
(I)記汽車選擇公路1運(yùn)送牛奶時(shí)牛奶廠獲得的毛收入為(單位:萬(wàn)元),求的分布列和數(shù)學(xué)期望;
(II)如果你是牛奶廠的決策者,你選擇哪條公路運(yùn)送牛奶有可能讓牛奶廠獲得的毛收入更多?
(注:毛收入=銷售商支付給牛奶廠的費(fèi)用-運(yùn)費(fèi))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

一中食堂有一個(gè)面食窗口,假設(shè)學(xué)生買飯所需的時(shí)間互相獨(dú)立,且都是整數(shù)分鐘,對(duì)以往學(xué)生買飯所需的時(shí)間統(tǒng)計(jì)結(jié)果如下:

買飯時(shí)間(分)
1
2
3
4
5
頻率
0.1
0.4
0.3
0.1
0.1
從第一個(gè)學(xué)生開始買飯時(shí)計(jì)時(shí).
(Ⅰ)估計(jì)第三個(gè)學(xué)生恰好等待4分鐘開始買飯的概率;
(Ⅱ)表示至第2分鐘末已買完飯的人數(shù),求的分布列及數(shù)學(xué)期望

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

某公司招聘員工采取兩次考試(筆試)的方法:第一試考選擇題,共10道題(均為四選一題型),每題10分,共100分;第二試考解答題,共3題。規(guī)則是:只有在一試中達(dá)到或超過(guò)80分者才獲通過(guò)并有資格參加二試,參加二試的人只有答對(duì)2題或3題才能被錄用,F(xiàn)有甲、乙兩人參加該公司的招聘考試。且已知在一試時(shí):兩人均會(huì)做10道題中的6道;對(duì)于另外4道題來(lái)說(shuō),甲有兩題可排除兩個(gè)錯(cuò)誤答案、有兩題完全要猜,乙有兩題可排除一個(gè)錯(cuò)誤答案、有一題可排除兩個(gè)錯(cuò)誤答案、有一題完全要猜。進(jìn)入二試后,對(duì)于任意一題,甲答對(duì)的概率是、乙答對(duì)的概率是.(1)分別求甲、乙兩人能通過(guò)一試進(jìn)入二試的概率、;(2)求甲、乙兩人都能被錄用的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

在某校高三學(xué)生的數(shù)學(xué)校本課程選課過(guò)程中,規(guī)定每位同學(xué)只能選一個(gè)科目.已知某班第一小組與第二小組各有六位同學(xué)選擇科目甲或科目乙,情況如下表:

 
科目甲
科目乙
總計(jì)
第一小組
1
5
6
第二小組
2
4
6
總計(jì)
3
9
12
現(xiàn)從第一小組、第二小組中各任選2人分析選課情況.
(1)求選出的4人均選科目乙的概率;
(2)設(shè)為選出的4個(gè)人中選科目甲的人數(shù),求的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

)已知某音響設(shè)備由五個(gè)部件組成,A電視機(jī),B影碟機(jī),C線路,D左聲道和E右聲道,其中每個(gè)部件工作的概率如圖所示,能聽到聲音,當(dāng)且僅當(dāng)A與B中有一個(gè)工作,C工作,D與E中有一個(gè)工作;且若D和E同時(shí)工作則有立體聲效果.

(1)求能聽到立體聲效果的概率;
(2)求聽不到聲音的概率.(結(jié)果精確到0.01)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

氣象部門提供了某地今年六月份(30天)的日最高氣溫的統(tǒng)計(jì)表如下:

日最高氣溫t (單位:℃)
t22℃
22℃< t28℃
28℃< t  32℃

天數(shù)
6
12


由于工作疏忽,統(tǒng)計(jì)表被墨水污染,數(shù)據(jù)不清楚,但氣象部門提供的資料顯示,六月份的日最高氣溫不高于32℃的頻率為0.9.
(Ⅰ) 若把頻率看作概率,求的值;
(Ⅱ) 把日最高氣溫高于32℃稱為本地區(qū)的 “高溫天氣”,根據(jù)已知條件完成下面列聯(lián)表,并據(jù)此你是否有95%的把握認(rèn)為本地區(qū)的“高溫天氣”與西瓜“旺銷”有關(guān)?說(shuō)明理由.
 
高溫天氣
非高溫天氣
合計(jì)
旺銷
1
 
 
不旺銷
 
6
 
合計(jì)
 
 
 
附:  

0.10
0.050
0.025
0.010
0.005
0.001

2.706
3.841
5.024
6.635
7.879
10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

某市、、四所中學(xué)報(bào)名參加某高校今年自主招生的學(xué)生人數(shù)如下表所示:

中學(xué)




人數(shù)




為了了解參加考試的學(xué)生的學(xué)習(xí)狀況,該高校采用分層抽樣的方法從報(bào)名參加考試的四所中學(xué)的學(xué)生當(dāng)中隨機(jī)抽取名參加問卷調(diào)查.
(1)問、、、四所中學(xué)各抽取多少名學(xué)生?
(2)從參加問卷調(diào)查的名學(xué)生中隨機(jī)抽取兩名學(xué)生,求這兩名學(xué)生來(lái)自同一所中學(xué)的概率;
(3)在參加問卷調(diào)查的名學(xué)生中,從來(lái)自、兩所中學(xué)的學(xué)生當(dāng)中隨機(jī)抽取兩名學(xué)生,用表示抽得中學(xué)的學(xué)生人數(shù),求的分布列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

某舞蹈小組有2名男生和3名女生.現(xiàn)從中任選2人參加表演,記為選取女生的人數(shù),求X的分布列及數(shù)學(xué)期望.

查看答案和解析>>

同步練習(xí)冊(cè)答案