某公司招聘員工采取兩次考試(筆試)的方法:第一試考選擇題,共10道題(均為四選一題型),每題10分,共100分;第二試考解答題,共3題。規(guī)則是:只有在一試中達(dá)到或超過(guò)80分者才獲通過(guò)并有資格參加二試,參加二試的人只有答對(duì)2題或3題才能被錄用。現(xiàn)有甲、乙兩人參加該公司的招聘考試。且已知在一試時(shí):兩人均會(huì)做10道題中的6道;對(duì)于另外4道題來(lái)說(shuō),甲有兩題可排除兩個(gè)錯(cuò)誤答案、有兩題完全要猜,乙有兩題可排除一個(gè)錯(cuò)誤答案、有一題可排除兩個(gè)錯(cuò)誤答案、有一題完全要猜。進(jìn)入二試后,對(duì)于任意一題,甲答對(duì)的概率是、乙答對(duì)的概率是.(1)分別求甲、乙兩人能通過(guò)一試進(jìn)入二試的概率;(2)求甲、乙兩人都能被錄用的概率.

(1), ;(2)甲、乙都能被錄取的概率是.

解析試題分析:(1)兩人都已穩(wěn)得60分,另外至少還要得20分,所以只需考慮另外4個(gè).這4個(gè)題中答對(duì)2個(gè)或3個(gè)或4 個(gè)均可進(jìn)入第二輪,三種情況的概率相加即得.也可以求出不能進(jìn)入第二輪的概率,用1減去這個(gè)概率即得能進(jìn)入二輪的概率.
(2)分別求出甲、乙能被錄取的概率相乘即得甲、乙都能被錄取的概率.
試題解析:(1)據(jù)條件有
,所以
     4分
同理       6分
(2)甲能被錄取的概率是    8分
乙能被錄取的概率是    10分
所以甲、乙都能被錄取的概率是    12分
考點(diǎn):古典概型.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

甲、乙兩名教師進(jìn)行乒乓球比賽,采用七局四勝制(先勝四局者獲勝).若每一局比賽甲獲勝的概率為,乙獲勝的概率為,現(xiàn)已賽完兩局,乙暫時(shí)以2∶0領(lǐng)先.
(1)求甲獲得這次比賽勝利的概率;
(2)設(shè)比賽結(jié)束時(shí)比賽的局?jǐn)?shù)為隨機(jī)變量X,求隨機(jī)變量X的概率分布和數(shù)學(xué)期望EX.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

某學(xué)校的三個(gè)學(xué)生社團(tuán)的人數(shù)分布如下表(每名學(xué)生只能參加一個(gè)社團(tuán)):

 
圍棋社
舞蹈社
拳擊社
男生
5
10
28
女生
15
30
m
學(xué)校要對(duì)這三個(gè)社團(tuán)的活動(dòng)效果進(jìn)行抽樣調(diào)查,按分層抽樣的方法從三個(gè)社團(tuán)成員中抽取18人,結(jié)果拳擊社被抽出了6人.
(Ⅰ)求拳擊社團(tuán)被抽出的6人中有5人是男生的概率;
(Ⅱ)設(shè)拳擊社團(tuán)有X名女生被抽出,求X的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

電子蛙跳游戲是:青蛙第一步從如圖所示的正方體頂點(diǎn)起跳,每步從一頂點(diǎn)跳到相鄰的頂點(diǎn).

(1)求跳三步跳到的概率;
(2)青蛙跳五步,用表示跳到過(guò)的次數(shù),求隨機(jī)變量的概率分布及數(shù)學(xué)期望

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

為貫徹“激情工作,快樂(lè)生物”的理念,某單位在工作之余舉行趣味知識(shí)有獎(jiǎng)競(jìng)賽,比賽分初賽和決賽兩部分,為了增加節(jié)目的趣味性,初賽采用選手選—題答—題的方式進(jìn)行,每位選手最多有5次選答題的機(jī)會(huì),選手累計(jì)答對(duì)3題或答錯(cuò)3題即終止其初賽的比賽,答對(duì)3題者直接進(jìn)入決賽,答錯(cuò)3題者則被淘汰,已知選手甲答題的正確率為.
(1)求選手甲答題次數(shù)不超過(guò)4次可進(jìn)入決賽的概率;
(2)設(shè)選手甲在初賽中答題的個(gè)數(shù),試寫出的分布列,并求的數(shù)學(xué)期望。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

用分層抽樣方法從高中三個(gè)年級(jí)的相關(guān)人員中抽取若干人組成研究小組,有關(guān)數(shù)據(jù)見(jiàn)下表:(單位:人)

(Ⅰ)求,;
(Ⅱ)若從高二、高三年級(jí)抽取的人中選人,求這2人都來(lái)自高二年級(jí)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

同時(shí)拋擲兩枚大小形狀都相同、質(zhì)地均勻的骰子,求:
(1)一共有多少種不同的結(jié)果;
(2)點(diǎn)數(shù)之和4的概率;
(3)至少有一個(gè)點(diǎn)數(shù)為5的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

某社區(qū)舉辦防控甲型H7N9流感知識(shí)有獎(jiǎng)問(wèn)答比賽,甲、乙、丙三人同時(shí)回答一道衛(wèi)生知識(shí)題,三人回答正確與錯(cuò)誤互不影響。已知甲回答這題正確的概率是,甲、丙兩人都回答錯(cuò)誤的概率是,乙、丙兩人都回答正確的概率是.
(I)求乙、丙兩人各自回答這道題正確的概率;
(II)用表示回答該題正確的人數(shù),求的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

甲、乙、丙三人獨(dú)立破譯同一份密碼,已知甲、乙、丙各自破譯出密碼的概率分別為
且他們是否破譯出密碼互不影響,若三人中只有甲破譯出密碼的概率為.
(1)求的值,
(2)設(shè)在甲、乙、丙三人中破譯出密碼的總?cè)藬?shù)為X,求X的分布列和數(shù)學(xué)期望E(X).

查看答案和解析>>

同步練習(xí)冊(cè)答案