.在棱長為2的正方體
中,動點
在
內(nèi),且到直線
的距離之和等于
,則
的面積最大值是 ( )
A. | B.1 | C.2 | D.4 |
在平面
內(nèi)部,因為
都與平面
垂直,那么點
到直線
的距離之和等于在平面
內(nèi)到
、
兩點的距離之和,如圖所示建系,
兩點坐標分別為
,所以
點軌跡為橢圓的一部分,易求該橢圓的軌跡方程為
,顯然當
時滿足
取最大值,此時
練習冊系列答案
相關(guān)習題
科目:高中數(shù)學
來源:不詳
題型:單選題
如圖,四面體
的三條棱
兩兩垂直,
,
,
為四面體
外一點.給出下列命題.
①不存在點
,使四面體
有三個面是直角三角形
②不存在點
,使四面體
是正三棱錐
③存在點
,使
與
垂直并且相等
④存在無數(shù)個點
,使點
在四面體
的外接球面上
其中真命題的序號是
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(本小題滿分13分)
如圖,已知菱形
的邊長為
,
,
.將菱形
沿對角線
折起,使
,得到三棱錐
.
(Ⅰ)若點
是棱
的中點,求證:
平面
;
(Ⅱ)求二面角
的余弦值;
(Ⅲ)設點
是線段
上一個動點,試確定
點的位置,使得
,并證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:填空題
已知四棱錐
的底面為正方形且側(cè)棱長與底面邊長相等,
是
的中點,則
所成的角的余弦值為______
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
如圖所示,已知ABCD是正方形,PD⊥平面ABCD,PD=AD=2.
(1)求異面直線PC與BD所成的角;
(2)在線段PB上是否存在一點E,使PC⊥平面ADE?若存在,確定E點的位置;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(本小題滿分12分)
如圖,在斜邊為AB的Rt△ABC,過A作PA⊥平面ABC,AE⊥PB于E,AF⊥PC于F.
(1)求證:BC⊥平面PAC.
(2)求證:PB⊥平面AEF.
(3)若AP=AB=2,試用tgθ(∠BPC=θ)表示△AEF的面積、當tgθ取何值時,△AEF的面積最大?最大面積是多少?
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
、(本題12分)在正方體
中
,
求證:(1)對角線
⊥平面
。
(2)
與平面
的交點H是
的外心。
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
如圖1,在正三角形ABC中,D、E、F分別為各邊的中點,G、H、I、J分別為AF、AD、BE、DE的中點.將△ABC沿DE、EF、DF折成三棱錐以后,GH與IJ所成角的度數(shù)為( )
A.90° B.60° C.45° D.0°
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
( (本小題滿分12分)
在棱長為4的正方體ABCD-A1B1C1D1中,O是正方形A1B1C1D1的中心,點P在棱CC1上,且CC1=4CP.
(1)、求直線AP與平面BCC1B1所成的角的大。ńY(jié)果用反三角函數(shù)值表示);
(2)、求點P到平面ABD1的距離.
查看答案和解析>>