( (本小題滿分12分)
在棱長為4的正方體ABCD-A1B1C1D1中,O是正方形A1B1C1D1的中心,點P在棱CC1上,且CC1=4CP.

(1)、求直線AP與平面BCC1B1所成的角的大。ńY(jié)果用反三角函數(shù)值表示);
(2)、求點P到平面ABD1的距離.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

在直四棱柱ABCD—A1B1C1D1中,已知底面四邊形
ABCD是邊長為3的菱形,且DB=3,A1A=2,點E
在線段BC上,點F在線段D1C1上,且BE=D1F=1.
(1)求證:直線EF∥平面B1D1DB;
(2)求二面角F—DB—C的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題


(8分)
如圖,在四面體中,,點分別是的中點.求證:
(1)直線;
(2)平面

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

.在棱長為2的正方體中,動點內(nèi),且到直線的距離之和等于,則的面積最大值是  (   )
A.B.1C.2D.4

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)
如圖, 在直三棱柱ABC-A1B1C1中,AC=3,BC=4,,AA1=3,點D是AB的中點.
(Ⅰ)求證:
(Ⅱ)求二面角的大。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

如圖所示,在三棱錐C—ABD中,E、F分別是AC和BD的中點,若CD=2AB=4,EF⊥AB,則EF與CD所成的角是          .

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(文)(本小題8分)
如圖,在四棱錐中,平面,,
(1)求證:;
(2)求點到平面的距離
證明:(1)平面,

平面 (4分)
(2)設點到平面的距離為,
,
求得即點到平面的距離為              (8分)
(其它方法可參照上述評分標準給分)

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本題滿分12分)
已知,,求點的坐標,使四邊形為直角梯形.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

兩個平面將空間最多分成______ ____個部分.

查看答案和解析>>

同步練習冊答案