A. | 4 | B. | 8 | C. | $\frac{7}{8}$ | D. | $\frac{3}{4}$ |
分析 把所用向量都用$\overrightarrow{BD}、\overrightarrow{DF}$表示,結(jié)合已知求出${\overrightarrow{BD}}^{2}、{\overrightarrow{DF}}^{2}$的值,則$\overrightarrow{BE}$•$\overrightarrow{CE}$的值可求.
解答 解:∵D是BC的中點(diǎn),E,F(xiàn)是AD上的兩個(gè)三等分點(diǎn),
∴$\overrightarrow{BF}$=$\overrightarrow{BD}+\overrightarrow{DF}$,$\overrightarrow{CF}$=-$\overrightarrow{BD}+\overrightarrow{DF}$,$\overrightarrow{BA}$=$\overrightarrow{BD}$+3$\overrightarrow{DF}$,$\overrightarrow{CA}$=-$\overrightarrow{BD}+3\overrightarrow{DF}$,
∴$\overrightarrow{BF}•\overrightarrow{CF}$=${\overrightarrow{DF}}^{2}-{\overrightarrow{BD}}^{2}=-1$,
$\overrightarrow{BA}•\overrightarrow{CA}$=9${\overrightarrow{DF}}^{2}-{\overrightarrow{BD}}^{2}=4$,
∴${\overrightarrow{DF}}^{2}=\frac{5}{8}$,${\overrightarrow{BD}}^{2}=\frac{13}{8}$,
又∵$\overrightarrow{BE}=\overrightarrow{BD}+2\overrightarrow{DF}$,$\overrightarrow{CE}=-\overrightarrow{BD}+2\overrightarrow{DF}$,
∴$\overrightarrow{BE}•\overrightarrow{CE}$=4${\overrightarrow{DF}}^{2}-{\overrightarrow{BD}}^{2}=\frac{7}{8}$,
故選:C.
點(diǎn)評 本題考查平面向量的數(shù)量積運(yùn)算,平面向量的線性運(yùn)算,是中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
ωx+φ | 0 | $\frac{π}{2}$ | π | $\frac{3π}{2}$ | 2π |
x | $\frac{2π}{3}$ | $\frac{8π}{3}$ | |||
Asin(ωx+φ) | 0 | 3 | 0 | -3 | 0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 充分不必要條件 | B. | 必要不充分條件 | ||
C. | 充要條件 | D. | 既不充分也不必要條件 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 三角形 | B. | 四邊形 | C. | 五邊形 | D. | 六邊形 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | $\sqrt{2}$ | C. | $\sqrt{3}$ | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 32π | B. | 48π | C. | 50π | D. | 64π |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com