7.已知函數(shù)f(x)是定義在R上的奇函數(shù),且當(dāng)x>0時(shí),f(x)=x2-x,求f(x)的解析式.

分析 根據(jù)函數(shù)的奇偶性,設(shè)x<0時(shí),則-x>0,得到f(-x)=x2+x,求出函數(shù)的解析式即可.

解答 解:由已知得f(0)=0,當(dāng)x<0時(shí),
則-x>0,而x>0時(shí),
f(x)=x2-x,所以f(-x)=x2+x,
又f(x)為奇函數(shù),所以f(x)=-f(-x),
所以得f(x)=-x2-x,
綜上可知f(x)=$\left\{\begin{array}{l}{{-x}^{2}-x,x<0}\\{0,x=0}\\{{x}^{2}-x,x>0}\end{array}\right.$.

點(diǎn)評(píng) 本題考查了求函數(shù)的解析式問(wèn)題,考查函數(shù)的奇偶性,是一道基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.在△ABC中,角A、B、C的對(duì)邊分別為a,b,c,且滿足a2-b2-c2+$\sqrt{3}$bc=0,2bsinA=a,BC邊上中線AM的長(zhǎng)為$\sqrt{14}$
( I)求角A和角B的大小;
( II)求△ABC的各邊長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.若$α∈(\frac{π}{2},π)$,則$\frac{3}{2}cos2α=sin(\frac{π}{4}-α)$,則sin2α的值為(  )
A.$\frac{2}{9}$B.$-\frac{2}{9}$C.$\frac{7}{9}$D.$-\frac{7}{9}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.“一帶一路”是“絲綢之路經(jīng)濟(jì)帶”和“21世紀(jì)海上絲綢之路”的簡(jiǎn)稱,某市為了了解人們對(duì)“一帶一路”的認(rèn)知程度,對(duì)不同年齡和不同職業(yè)的人舉辦了一次“一帶一路”知識(shí)競(jìng)賽,滿分100分(90分及以上為認(rèn)知程度高),現(xiàn)從參賽者中抽取了x人,按年齡分成5組(第一組:[20,25),第二組:[25,30),第三組:[30,35),第四組:[35,40),第五組:[40,45]),得到如圖所示的頻率分布直方圖,已知第一組有6人.
(1)求x;
(2)求抽取的x人的年齡的中位數(shù)(結(jié)果保留整數(shù));
(3)從該市大學(xué)生、軍人、醫(yī)務(wù)人員、工人、個(gè)體戶五種人中用分層抽樣的方法依次抽取6人,42人,36人,24人,12人,分別記1~5組,從這5個(gè)按年齡分的組和5個(gè)按職業(yè)分的組中每組各選派1人參加知識(shí)競(jìng)賽代表相應(yīng)的成績(jī),年齡組中1~5組的成績(jī)分別為93,96,97,94,90,職業(yè)組中1~5組的成績(jī)分別為93,98,94,95,90.
(I)分別求5個(gè)年齡組和5個(gè)職業(yè)組成績(jī)的平均數(shù)和方差;
(II)以上述數(shù)據(jù)為依據(jù),評(píng)價(jià)5個(gè)年齡組和5個(gè)職業(yè)組對(duì)“一帶一路”的認(rèn)知程度,并談?wù)勀愕母邢耄?/div>

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.已知公比小于1的等比數(shù)列{an}的前n項(xiàng)和為Sn,a1=$\frac{1}{2},7{a_2}=2{S_3}$.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=log2(1-Sn+1),若$\frac{1}{{{b_1}{b_3}}}+\frac{1}{{{b_3}{b_5}}}+…+\frac{1}{{{b_{2n-1}}{b_{2n+1}}}}=\frac{5}{21}$,求n.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.如圖所示,四棱錐P-ABCD中,底面ABCD為平行四邊形,PA⊥AD,PA⊥AB,AB=AD,AC與BD交于點(diǎn)O.
(Ⅰ)求證:平面PAC⊥平面PBD;
(Ⅱ)直線PD與過(guò)直線AC的平面α平行,平面α與棱PB交于點(diǎn)M,指明點(diǎn)M的位置,并證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.sin(π-α)=$\frac{1}{7}$,α是第二象限角,則tanα=$\frac{\sqrt{3}}{12}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.已知Rt△ABC中,∠C=90°.AC=3,BC=4,P為線段AB上的點(diǎn),且$\overrightarrow{CP}$=$\frac{x}{|\overrightarrow{CA}|}$•$\overrightarrow{CA}$+$\frac{y}{|\overrightarrow{CB}|}$•$\overrightarrow{CB}$,則xy的最大值為( 。
A.3B.2C.1D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.在等比數(shù)列{an}中,S3=3a3,則其公比q的值為( 。
A.-$\frac{1}{2}$B.$\frac{1}{2}$C.1或-$\frac{1}{2}$D.-1或$\frac{1}{2}$

查看答案和解析>>

同步練習(xí)冊(cè)答案