19.sin(π-α)=$\frac{1}{7}$,α是第二象限角,則tanα=$\frac{\sqrt{3}}{12}$.

分析 利用同角三角函數(shù)的基本關(guān)系、誘導(dǎo)公式,以及三角函數(shù)在各個(gè)象限中的符號,求得tanα的值.

解答 解:∵sin(π-α)=$\frac{1}{7}$=sinα,即sinα=$\frac{1}{7}$,
∵α是第二象限角,∴cosα=-$\sqrt{{1-sin}^{2}α}$=-$\frac{4\sqrt{3}}{7}$,則tanα=$\frac{sinα}{cosα}$=-$\frac{1}{4\sqrt{3}}$=-$\frac{\sqrt{3}}{12}$,
故答案為:-$\frac{\sqrt{3}}{12}$.

點(diǎn)評 本題主要考查同角三角函數(shù)的基本關(guān)系、誘導(dǎo)公式的應(yīng)用,以及三角函數(shù)在各個(gè)象限中的符號,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.點(diǎn)M(x,y)在函數(shù)y=-$\sqrt{1-{x}^{2}}$的圖象上,則$\frac{y-1}{x}$的取值范圍是( 。
A.[-1,1]B.(-1,1)C.(-∞,-1)∪(1,+∞)D.(-∞,-1]∪[1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知某幾何體的三視圖如圖所示,俯視圖中正方形的邊長為2,正視圖中直角梯形的兩底長為1和2,則此幾何體的體積為( 。
A.3B.$\frac{10}{3}$C.$\frac{11}{3}$D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知函數(shù)f(x)是定義在R上的奇函數(shù),且當(dāng)x>0時(shí),f(x)=x2-x,求f(x)的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知Sn為等差數(shù)列{an}的前n項(xiàng)和,若a4+a9=10,則S12等于( 。
A.30B.45C.60D.120

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.執(zhí)行如圖所示的程序框圖,若$a=\frac{9}{4}$,則輸出S的值為( 。
A.10B.12C.14D.16

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.點(diǎn)(2,0,3)位于( 。
A.Y軸上B.X軸上C.XOZ平面內(nèi)D.YOZ平面內(nèi)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.A,B,C是球O上的三點(diǎn),AB=5,AC=3,BC=4,球O的直徑等于13,則球心O到平面ABC的距離為( 。
A.$2\sqrt{3}$B.6C.9D.12

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.記橢圓$\frac{x^2}{4}+\frac{{n{y^2}}}{4n+1}$=1圍成的區(qū)域(含邊界)為Ωn(n=1,2,3…),當(dāng)點(diǎn)(x,y)分別在Ω1,Ω2,…上時(shí),x+y的最大值分別是M1,M2,…,則$\lim_{n→+∞}{M_n}$=2$\sqrt{2}$.

查看答案和解析>>

同步練習(xí)冊答案