已知f(n)=1+++…+ (n∈N*),用數(shù)學(xué)歸納法證明f(2n)>時(shí),f(2k+1)-f(2k)等于________.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:單選題
下列推理是歸納推理的是
A.A,B為定點(diǎn),動(dòng)點(diǎn)P滿足|PA|+|PB|=2a>|AB|,則P點(diǎn)的軌跡為橢圓 |
B.由a1=1,an=3n-1,求出S1,S2,S3,猜想出數(shù)列的前n項(xiàng)和Sn的表達(dá)式 |
C.由圓x2+y2=r2的面積πr2,猜想出橢圓+=1的面積S=πab |
D.科學(xué)家利用魚(yú)的沉浮原理制造潛艇 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
完成反證法證題的全過(guò)程.設(shè)a1,a2, ,a7是1,2, ,7的一個(gè)排列,求證:乘積p=(a1-1)(a2-2) (a7-7)為偶數(shù).
證明:假設(shè)p為奇數(shù),則a1-1,a2-2, ,a7-7均為奇數(shù).因奇數(shù)個(gè)奇數(shù)之和為奇數(shù),故有奇數(shù)= = =0.但0≠奇數(shù),這一矛盾說(shuō)明p為偶數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
觀察下列等式:
+=;
+++=;
+++++=;
則當(dāng)且時(shí),
++++++=________(最后結(jié)果用表示).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
在計(jì)算“1×2+2×3+...+n(n+1)”時(shí),某同學(xué)學(xué)到了如下一種方法:
先改寫(xiě)第k項(xiàng):k(k+1)=
由此得1×2=.
.
.............
.
相加,得1×2+2×3+...+n(n+1).
類比上述方法,請(qǐng)你計(jì)算“1×2×3×4+2×3×4×+....+”,其結(jié)果是_________________.(結(jié)果寫(xiě)出關(guān)于的一次因式的積的形式)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
若a,b,c是不全相等的正數(shù),給出下列判斷:
①(a-b)2+(b-c)2+(c-a)2≠0;
②a>b與a<b及a=b中至少有一個(gè)成立;
③a≠c,b≠c,a≠b不能同時(shí)成立.
其中判斷正確的是________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
觀察下列等式:
可以推測(cè):13+23+33+…+n3=________(n∈N*,用含n的代數(shù)式表示).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com